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Abstract. In this paper, we discuss the theory of semigroups of bounded operators and how

they characterise the solution of the differential equation u′ = Au. The fundamental results

are given in the form of the Hille-Yosida and Lumer-Phillips theorems, which characterise the

generator of such semigroups. Further, we discuss perturbations of semigroups and positivity

of elements and linear operators, and how this theory relates to the particular example of a

birth-and-death process in an analytic framework.
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PERTURBATIONS OF POSITIVE SEMIGROUPS 1

1. Introduction

The aim of this paper is to study the theory of semigroups and how they can be used to

solve differential equations of the form u′(t) = Au(t) for t > 0 for some initial condition in a

Banach space X. It is known that for nice operators A, for example matrices or bounded linear

operators in X, the solution is characterised by u(t) = etAu0, however when A is not necessarily

a bounded operator then it is not possible to understand the matrix exponential etA. Thus we

need a tool to generalise the exponential and find such solutions in this case.

We begin in chapter 2 by recalling some facts about bounded and unbounded operators, and

study the idea of closedness and density of an operator. These concepts are in fact necessary

conditions for the operator A to generate a semigroup. We also recall the uniform boundedness

theorem for a collection of bounded operators and the closed graph theorem, as uniform bounds

and closedness are of importance when studying semigroups. We also introduce the notion of the

resolvent and spectrum of a closed and densely defined operator, proving some characteristics

of such objects, in particular that the resolvent is always bounded for closed operators (of which

we mostly only consider later on).

In chapter 3 we discuss the notion of positivity. In some spaces, for example the reals R, we

are used to considering the natural order ≤ which is reflexive, anti-symmetric and transitive,

and this ordering gives the notion of a positive element (namely, x ≥ 0). However in a general

Banach space X, such a notion may not be explicitly obvious, and so we introduce a partial

ordering on X to deal with this. With such constructions, we can generalise a lot of properties

which hold in (R, | · |), for example the triangle inequality. Using positivity of a space allows us

to define what it means for an operator to be positive in a natural way.

In chapter 4, we introduce the theory of strongly continuous semigroups. As discussed above,

this will allow us to define the solution of differential equations u′ = Au when A is an unbounded

operator, provided that our initial condition is in the domain of A. After proving some pre-

liminary results about semigroups, we discuss the Hille-Yosida and Lumer-Phillips generation

theorems. These are theorems which give necessary and sufficient conditions for a linear oper-

ator to be the generator of a semigroup, so in particular if A is not at least closed and densely

defined, then it doesn’t stand a chance of generating a semigroup. The Lumer-Phillips theorem

introduces the notion of a dissipative operator in relation to semigroups of contractions.

In chapter 5, we consider a different approach to solving u′ = Au using the perturbation of

semigroups. Indeed, it may be possible to deconstruct A as the sum of two operators, of which

one may clearly generate a strongly continuous semigroup, and so the perturbation theory will

allow us to see if the perturbing operator is nice enough so that it preserves properties from the

semigroup generated by A. We state and prove an important spectral criterion which is used

throughout the chapter. We consider some particular perturbations, in fact bounded perturba-

tions and Miyadera perturbations. Further, we state a theorem relating to the perturbation of

a positive semigroup of contractions, which is of use in chapter 6.

In chapter 6, we apply some of the above theory to the particular example of a birth and death

process. Using standard modelling relating to birth and death rates, we obtain the equation

u′ = Au+ Bu for some operators A and B. From this, we can use the theory of semigroups of

contractions and perturbations to characterise the solution in some sense.
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2. Linear Operators

In order to discuss the notion of a positive operator, we first recall some facts about operators

and some fundamental theorems, namely the Banach-Steinhaus, and closed graph theorem. We

also recall the spectrum and resolvent of a closed, densely defined operator since this will be of

importance when discussing semigroups and their perturbations.

For further discussions of these concepts, see [1, §2.1.2].

2.1. Definitions. In the following, X and Y denote Banach spaces over the field R or C.

The respective norms are denoted by ‖ · ‖X or ‖ · ‖Y , or just ‖ · ‖ if the ambient space is clear.

Definition 2.1. An operator from X to Y is a linear mapping A : D(A)→ Y where D(A) is a

linear subspace of the space X, called the domain of A. We often denote an operator with its

domain as (A,D(A)). The space of all such operators is the set L(X,Y ).

If D(A) = X, then we say that A is an everywhere defined operator.

If D(A) = X, then we say that A is a densely defined operator.

Remark 2.2. If Y = F is a field of scalars, then elements of L(X,Y ) are called functionals.

Definition 2.3. An everywhere defined operator A is bounded if there exists a constant M ≥ 0

such that ‖Ax‖ ≤M‖x‖ for all x ∈ X. In such a case, we write A ∈ L(X,Y ).

We write L(X) for L(X,X), and note that L(X,Y ) ⊆ L(X,Y ).

For any operator A in L(X,Y ), its operator norm is defined by

‖A‖ := sup
x∈X
‖x‖≤1

‖Ax‖.

We also have the following equivalent definitions for the operator norm,

‖A‖ = sup
x∈X
‖x‖=1

‖Ax‖ = sup
x∈X
x 6=0

‖Ax‖
‖x‖

.

In fact, the operator norm is the minimum value of M for which ‖Ax‖ ≤M‖x‖ for all x ∈ X.

With the operator norm, L(X,Y ) becomes a Banach space.

Definition 2.4. Let (A,D(A)) be an operator in X and Y ⊆ X.

Then the part of A in Y is the function AY defined by AY y := Ay with domain

D(AY ) = {x ∈ D(A) ∩ Y : Ax ∈ Y }.

Definition 2.5. Let (A,D(A)) and (B,D(B)) be two operators in L(X,Y ). Then we say that

B is an extension of A, denoted A ⊆ B, if D(A) ⊆ D(B) and Ax = Bx for all x ∈ D(A).

We now consider unbounded operators (A,D(A)), so operators in L(X,Y )\L(X,Y ).

Definition 2.6. The graph norm of A is the norm ‖ · ‖A on D(A) defined by

‖x‖A := ‖x‖+ ‖Ax‖, x ∈ D(A).

It is easy to see that (D(A), ‖ · ‖A) is indeed a normed space.

Definition 2.7. The graph of an operator A is the set G (A) := {(x,Ax) ∈ X ×Y : x ∈ D(A)}.
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Definition 2.8. An operator A is closed if G (A) is a closed subset of X × Y .

Here, closedness is with respect to the norm ‖(x, y)‖X×Y = ‖x‖X + ‖y‖Y on X × Y .

If X and Y are both Banach spaces, then X × Y is Banach with this norm.

Proposition 2.9. A is a closed operator if and only if for all sequences (xn)n∈N ⊆ D(A) such

that xn → x in X and Axn → y in X as n→∞, we have that x ∈ D(A) and Ax = y.

Proof. This follows since A is closed iff G (A) = G (A), that is G (A) contains its limit points. �

Lemma 2.10. If A ∈ L(X,Y ) is a closed operator, then so is −A and A− λI for any λ ∈ F.

Further, if X = Y and A is invertible then A−1 is a closed operator.

Proof. We note that D(A) = D(−A) = D(A−λ). If A is closed, consider a sequence (xn)n∈N ⊆
D(A) such that xn → x in X and (−A)xn → y in Y as n→∞. Then we have that Axn → −y,

and so x ∈ D(A) with Ax = −y since A is closed, or equivalently (−A)x = y, so that −A is a

closed operator. A similar proof follows to show that A− λ is closed. Now if A : D(A)→ X is

invertible, A−1 exists. Then since A is a closed operator, G (A) is closed in X ×X and any set

in G (A) is of the form (x,Ax) for x ∈ D(A). Because A−1 is onto, there exists a y ∈ X with

A−1y = x, or equivalently y = Ax. Hence G (A) = {(A−1y, y) : y ∈ X} is closed, and changing

the order of the coordinates gives G (A−1), thus A−1 is closed. �

Definition 2.11. An operator A in X is closable if G (A) is itself the graph of some operator.

That is, if (0, y) ∈ G (A) then y = 0, or equivalently if (xn)n∈N ⊆ D(A) with xn → 0 in X and

Axn → y in Y , then y = 0. We denote by A the operator whose graph is the set G (A), where

D(A) = {x ∈ X : ∃(xn)n∈N ⊆ D(A), y ∈ X such that ‖xn − x‖ → 0 and ‖Axn − y‖ → 0},

with Ax = y = limn→∞Axn.

Example 2.12. Differential operators give examples of unbounded operators which are closed.

Let X = C0([0, 1]) with the supremum norm and define D : D(D)→ X by Dx(t) = x′(t) where

x ∈ D(D) = C1([0, 1]). This operator is unbounded since if xn(t) = tn for n ∈ N, then ‖xn‖ = 1

for all n and also Dxn(t) = ntn−1 so that ‖Dxn‖ = n, hence ‖D‖ ≥ n. Further, this operator

is closed. For this, let C1([0, 1]) 3 xn → x and Dxn = x′n → y as n→∞. Then∫ t

0

y(τ) dτ = lim
n→∞

∫ t

0

x′n(τ) dτ = lim
n→∞

(xn(t)− xn(0)) = x(t)− x(0). (2.1)

Here the first, second and third equalities following respectively by the uniform convergence of

x′n → y, the fundamental theorem of calculus and the pointwise convergence of xn → x (which

is implied by the uniform convergence). Then by (2.1), since y is continuous, x ∈ C1([0, 1]) and

also x′ = y, proving that D is a closed operator.

2.2. Fundamental Theorems. We recall the following theorems from functional analysis [2].

Theorem 2.13 (Banach-Steinhaus/Uniform boundedness principle). Let X be a Banach space

and Y a normed space. Let T ⊆ L(X,Y ) be a collection of bounded linear operators form X to

Y such that {Tx : T ∈ T } is bounded in Y for all x ∈ X. Then T is bounded in L(X,Y ).

Consequently, if (An)n∈N ⊆ L(X,Y ) is such that (Anx)n∈N is bounded for every x ∈ X, then

there exists a unique operator A ∈ L(X,Y ) such that Ax = limn→∞Anx for x ∈ X.
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Theorem 2.14. Let X,Y be Banach spaces and A ∈ L(X,Y ) bijective. Then A−1 ∈ L(Y,X).

Theorem 2.15. Let X and Y be normed spaces and A ∈ L(X,Y ) bounded with domain D(A).

(i) If D(A) is closed in X, then A is a closed operator; and

(ii) If A is a closed operator and Y is complete, then D(A) is closed in X.

Theorem 2.16 (Closed graph theorem). Let X and Y be Banach spaces and (A,D(A)) a closed

linear operator D(A)→ Y defined on the closed linear subspace D(A). Then A is bounded.

Remark 2.17. If A is a linear operator between two Banach spaces X and Y such that D(A) =

X, that is A is everywhere defined, then by the closed graph theorem A is a bounded operator,

so A ∈ L(X,Y ). Conversely if A ∈ L(X,Y ), then D(A) = X is closed in X and so A is a closed.

2.3. Resolvent and Spectrum. Throughout this subsection, any operator (A,D(A)) in X is

assumed to be densely defined, that is D(A) = X, and closed. When talking about the spectrum

and resolvent of an operator, we need our spaces to be over the field of complex numbers, C.

However if X is a space over R, then we can complexify the space; see [1, §2.2.5].

Definition 2.18. The resolvent set of A, denoted by %(A), is the set of complex scalars λ ∈ C
for which the operator λI −A : D(A)→ X is an invertible operator. For such λ, we define the

resolvent of A as the operator R(λ,A) := (λI −A)−1 which maps X to D(A).

By definition, we have that D(A) = R(λ,A)X for any λ ∈ %(A).

Definition 2.19. The spectrum of A, denoted by σ(A), is the complement of the resolvent set.

That is, σ(A) = C\%(A).

Remark 2.20. The spectrum of an operator A is usually divided into three subsets:

(i) the point spectrum, denoted by σp(A), which is the set of λ ∈ σ(A) for which the operator

λI −A is not one-to-one (the eigenvalues of A);

(ii) the continuous spectrum, denoted by σc(A), which is the set of all λ ∈ σ(A) for which the

operator λI −A is one-to-one with range which is dense in, but not equal to, X; and

(iii) the residual spectrum, denoted by σr(A), which is the set of all λ ∈ σ(A) for which the

operator λI −A is one-to-one with range which is not dense in X.

With such constructions, we have that σ(A) = σp(A) ∪ σc(A) ∪ σr(A) (as a disjoint union).

The following result gives an insight into why we assume that A is closed in this subsection.

Lemma 2.21. Let λ ∈ %(A). Then the resolvent R(λ,A) is bounded if and only if A is closed.

Proof. The resolvent R(λ,A) = (λI−A)−1 : X → D(A) ⊆ X is an everywhere defined operator,

so by the closed graph theorem (in fact by remark 2.17) the resolvent is bounded if and only if its

graph G (R(λ,A)) = {(x, (λI −A)−1x) : x ∈ X} is a closed subspace of X ×X. If y = R(λ,A)x

for some x ∈ X, then y ∈ D(A) and also (λI −A)y = x. Therefore

G (R(λ,A)) = {((λI −A)y, y) : y ∈ D(A)}

is closed. Since a reordering of the coordinate components does not affect the closedness of this

set, we have that {(y, (λI −A)y) : y ∈ D(A)} = G (λI −A) is closed. In other words, λI −A is

a closed operator, or equivalently A is closed by lemma 2.10. �
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Proposition 2.22 (Resolvent identity). For any λ, µ ∈ %(A),

R(λ,A)−R(µ,A) = (µ− λ)R(λ,A)R(µ,A).

Proof. Since R(λ,A)(λI −A) = (λI −A)R(λ,A) = I and similarly for R(µ,A), we have that

R(λ,A)−R(µ,A) = R(λ,A)(µI −A)R(µ,A)−R(λ,A)(λI −A)R(µ,A)

= (µ− λ)R(λ,A)R(µ,A),

as required. �

Remark 2.23. Consequently, the resolvents R(λ,A) and R(µ,A) commute for any λ, µ ∈ %(A).

Remark 2.24 (Pseudoresolvents). More generally, the set {R(λ,A)}λ∈%(A) is a family of pseudo

resolvents. In fact, if ∆ ⊆ C, a family {J(λ)}λ∈∆ of bounded linear operators on X that satisfies

J(λ)−J(µ) = (µ−λ)J(λ)J(µ) for all λ, µ ∈ ∆ is called a pseudoresolvent on ∆. Consequently,

J(λ) and J(µ) commute for any λ, µ. It is easy to see that imJ(λ) is independent of λ ∈ ∆ as

J(λ) = J(µ)(I + (µ− λ)J(λ)),

and so if y ∈ im J(λ), then y = J(λ)x for some x ∈ X and hence from the above

y = J(µ)(I + (µ− λ)J(λ))x = J(µ)(x+ (µ− λ)y),

so y ∈ im J(µ). By symmetry, we obtain that imJ(λ) = imJ(µ) for any λ, µ. Further, ker J(λ)

is also independent of λ ∈ ∆ since J(λ) = (I + (µ− λ)J(λ))J(µ), so clearly ker J(µ) ⊆ ker J(λ)

and by symmetry we obtain the equality. It also follows that J(λ) is the resolvent of a unique

densely defined closed operator A if and only if kerJ(λ) = {0} and imJ(λ) is dense in X; see

[1, Theorem 3.41] for a proof of this.

Theorem 2.25. The resolvent set %(A) is an open subset of C.

Proof. Let λ ∈ %(A). Then for any µ ∈ C we have that

µI −A = λI −A+ (µ− λ)I = (λI −A)[I + (µ− λ)R(λ,A)].

Therefore if |µ− λ| < ‖R(λ,A)‖−1, then I + (µ− λ)R(λ,A) is an invertible operator using the

Neumann series, and thus µI−A is invertible as it is the composition of two invertible operators.

In other words, B(λ, ‖R(λ,A)‖−1) ⊆ %(A) and so %(A) is an open subset of C. �

Corollary 2.26. λ 7→ R(λ,A) is an analytic function such that for any n ∈ N0,

dn

dλn
R(λ,A) = (−1)nn!R(λ,A)n+1. (2.2)

Proof. Let λ, µ ∈ %(A) with |µ− λ| < ‖R(µ,A)‖−1. Then from the resolvent identity,

R(λ,A)[I − (µ− λ)R(µ,A)] = R(µ,A).

Therefore from the assumption on |µ− λ|, we have the Neumann series

R(λ,A) =

∞∑
k=0

(µ− λ)kR(µ,A)k+1, (2.3)
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thus R(λ,A) is analytic in λ. As the function is analytic, we can differentiate (2.3) term-by-term

n-times and hence obtain the result (2.2). More formally, clearly (2.2) holds for n = 0 and also

for n = 1 since from (2.3) we see that

d

dλ
R(λ,A) =

∞∑
k=1

(−k)(µ− λ)k−1R(µ,A)k+1,

so taking µ = λ the right-hand side becomes −R(λ,A)2 with convention 00 = 1. Now assume

the result holds for all 0 ≤ m ≤ n for some n ≥ 1. Then from the Neumann series we have that

dn+1

dλn+1
R(λ,A) =

d

dλ

dn

dλn
R(λ,A) = (−1)nn!

d

dλ
R(λ,A)n+1

Then using that the result holds for m = 1, we obtain that

d

dλ
R(λ,A)n+1 = (n+ 1)R(λ,A)n

d

dλ
R(λ,A) = −(n+ 1)R(λ,A)n+2,

thus the result follows by induction. �

Definition 2.27. If A is a bounded operator in X, then its spectral radius is the value

r(A) := sup
λ∈σ(A)

|λ|.

If (A,D(A)) is an unbounded operator, then its spectral bound is s(A) := sup{<[λ] : λ ∈ σ(A)}.

Theorem 2.28. For any bounded operator A in X, we have that

r(A) = lim
n→∞

‖An‖1/n.

Consequently, r(A) ≤ ‖A‖. Now if ‖A‖ < 1 for any bounded operator A, then 1 ∈ %(A) and

(I −A)−1 =

∞∑
n=0

An where A0 = I. (2.4)

The proof follows since the above series defines a Cauchy sequence as ‖A‖ < 1, which is hence

convergent asX is Banach. The following proposition gives more general conditions for 1 ∈ %(A).

Proposition 2.29. Let A ∈ L(X). If r(A) < 1, then 1 ∈ %(A) and (2.4) holds.

Proof. If r(A) < 1, then we have that |λ| < 1 for all λ ∈ %(A). Hence 1 ∈ %(A), as if not then

1 ∈ σ(A), giving rise to a contradiction. Therefore R(1, A) = (I − A)−1 exists. Now using the

equivalent characterisation of r(A) from theorem 2.28, if q is such that r(A) < q < 1, then there

exists an N ∈ N such that ‖An‖1/n < q for all n ≥ N by inertia, that is ‖An‖ < qn. Then

∞∑
k=0

‖Ak‖ ≤
N−1∑
k=0

‖Ak‖+

∞∑
k=N

qn <∞,

so the Neumann series is absolutely convergent. Then it can be shown that (I−A)Sn = I−An+1

and where Sn denote the partial sums of
∑∞
k=0A

k, and taking n→∞ we obtain that

(I −A)

∞∑
k=0

Ak = I,

since ‖Anx‖ ≤ ‖An‖‖x‖ ≤ qn‖x‖ → 0 as n → ∞, so An+1 → 0 as n → ∞. It can similarly be

shown that
∑∞
k=0A

k(I −A) = I, and so the Neumann series (2.4) holds, as required. �
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3. Banach Spaces and Order

For a more detailed description of the following concepts, see [1, §2.2].

3.1. Ordered Banach Spaces. Before discussing what it means for an operator to be positive,

we consider what it actually means for an element of some arbitrary vector space to be positive

or negative. In R, there is a natural ordering given by ≤, and this binary operation is reflexive,

anti-symmetric and transitive. In other words, for all x, y, z ∈ R we have that (i) x ≤ x, (ii)

x ≤ y and y ≤ x implies x = y and (iii) if x ≤ y and y ≤ z, then x ≤ z, respectively. Since for

any x, y ∈ R we know that either x ≤ y or y ≤ x, any elements in R are comparable with respect

to ≤. An ordering with the above such properties is called a total ordering. Similar orderings

can be defined on Rn (componentwise) and even on abstract function spaces such as L1(Ω) for

a measure space Ω, where the ordering is defined pointwise almost everywhere; in other words,

f ≤ g if and only if f(x) ≤ g(x) for almost every x ∈ Ω. These are natural orderings, but for a

general vector space there may not exist such an obvious ordering.

We now introduce some basic theory to introduce partial orders and ordered vector spaces.

Definition 3.1. Let X be any set. A partial order (or simply order) on X is a binary relation,

denoted by �, which is reflexive, anti-symmetric and transitive. Respectively, that is

(O1) x � x for any x ∈ X;

(O2) for any x, y ∈ X, if x � y and y � x, then x = y; and

(O3) for any x, y, z ∈ X, if x � y and y � z, then x � z.
We also write y � x to mean x � y.

Definition 3.2. Let S ⊆ X be any subset.

(i) An element x ∈ X is an upper bound for S if s � x for all s ∈ S.

(ii) An element x ∈ S is said to be maximal if there is no s ∈ S, s 6= x such that x � s.
(iii) An element x ∈ S is the greatest element of S if s � x for all s ∈ S.

We define a lower bound, minimal element and least element analogously.

Remark 3.3. Note the distinction between maximal elements and greatest elements. In fact,

x ∈ S is maximal if it is the largest amongst all comparable elements of S, whereas a greatest

element is the largest amongst all elements in S.

Now as in R, we can define the supremum and infimum of any set S ⊆ X.

Definition 3.4. Let S ⊆ X be any subset.

(i) We call x ∈ X the supremum of S, denoted x = supS, if it is the least upper bound of S.

That is, s � x for all s ∈ S, and any other upper bound y ∈ X of S has x � y.

(ii) We call x ∈ X the infimum of S, denoted x = inf S, if it is the greatest lower bound of S.

We denote the supremum and infimum of the two-point set {x, y} by x∨y and x∧y, respectively.

Definition 3.5. Let X be a set with partial ordering �.

We call X a lattice if every pair of elements has supremum and infimum.

We can equip a partial order to any vector space which respects the vector space structure.

We assume that all vector spaces X are over the field R unless otherwise stated.
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To use spectral theory, we need to work over C, but this can be done by complexification of

the space X. For a more detailed description of this concept, see [1, §2.2.5].

Definition 3.6. An ordered vector space is a vector space X equipped with a partial order �
which is compatible with the vector space structure in the sense that

(O4) for any x, y, z ∈ X, if x � y then x+ z � y + z; and

(O5) for any x, y ∈ X and scalar α ≥ 0, if x � y then α · x � α · y,

where +, · are the vector space operations.

Moreover, if X is also a lattice, then it is called a vector lattice (or Riesz space).

Example 3.7. Function spaces are typical examples of Riesz spaces. If X = RΩ for some set Ω,

then we can introduce a pointwise ordering on X by f � g if and only if f(x) ≤ g(x) for all x ∈ Ω

(or f(x) ≤ g(x) for almost everywhere x if Ω is a measure space). Now we define the operations

f ∨ g and f ∧ g on X ×X by (f ∨ g)(x) := max{f(x), g(x)} and (f ∧ g)(x) := min{f(x), g(x)}.
Then we call X a function space if f ∨ g, f ∧ g ∈ X for all f, g ∈ X.

Definition 3.8. The positive cone of an ordered vector space X is the set

X+ := {x ∈ X : x � 0}.

Remark 3.9. More generally, a convex cone in a vector space X is a set C with the following

characterising properties: C + C ⊆ C, αC ⊆ C for any α ≥ 0 and C ∩ (−C) = {0}. It is not

hard to see that X+ is in fact a convex cone in X using the compatibility of � with the vector

space operations. On the other hand, given a convex cone C, the relation (on X) given by x � y
if and only if y − x ∈ C makes X an ordered vector space with X+ = C since

X+ = {x ∈ X : x � 0} = {x ∈ X : x− 0 = x ∈ C} = C.

Figure 1. Visualisation of a positive cone in R3.

The convex cone C of X is called generating if X = C − C, so every vector x ∈ X can be

expressed as the difference of two ‘positive’ vectors, that is x = c1 − c2 for some c1, c2 � 0.

Remark 3.10. In the real numbers R, there are no infinitely large or small numbers. In other

words, for any r ∈ R+ we have that limn→∞ n−1r = 0. This is called the Archimedean property

of the reals, and this motivates an analogous definition in any Riesz space.

Definition 3.11. A Riesz space is Archimedean if infn∈N{n−1x} = 0 for any x ∈ X+.
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3.2. Generalising Properties of (R, |·|). The following concepts are generalisations of results

from the reals R with ordering ≤. In particular, the modulus or absolute value of an element

and the triangle inequality. In order to do this, we need to define the absolute value in a general

Riesz space which is the analogue of |x| = max{x,−x} in R. We first consider some properties

of suprema and infima which will be used to prove later results.

Proposition 3.12. Let X be a Riesz space and let x, y, z ∈ X. Then

(i) x+ y = sup{x, y}+ inf{x, y};
(ii) x+ sup{y, z} = sup{x+ y, x+ z} and x+ inf{y, z} = inf{x+ y, x+ z};

(iii) sup{x, y} = − inf{−x,−y} and inf{x, y} = − sup{−x,−y}; and

(iv) α sup{x, y} = sup{αx, αy} and α inf{x, y} = inf{αx, αy} for α ≥ 0.

Proof. (i) Since inf{x, y} � y we have that x+ inf{x, y} � x+ y by (O4). Therefore

x � x+ y − inf{x, y},

and similarly y � x+y− inf{x, y}. Hence sup{x, y} � x+y− inf{x, y}. Now on the other

hand, y � sup{x, y} and so x+ y − sup{x, y} � x and similarly x+ y − sup{x, y} � y. So

we obtain that x+ y − sup{x, y} � inf{x, y}, and hence the result follows by (O2).

(ii) Clearly x+ y � x+ sup{y, z} and x+ z � x+ sup{y, z} by (O4), therefore we deduce that

sup{x+ y, x+ z} � x+ sup{y, z}.

On the other hand, y = −x+ (x+ y) � −x+ sup{x+ y, x+ z} and similarly for z. Hence

sup{y, z} � −x+sup{x+y, x+z}, as required. The equality for infima is proven similarly.

(iii) Since x, y � sup{x, y}, we have − sup{x, y} � −x and − sup{x, y} � −y and therefore we

obtain − sup{x, y} � inf{−x,−y}. Now suppose that z is any lower bound of {−x,−y},
then we have z � −x and z � −y and so −z � x, y. Hence −z � sup{x, y}, or equivalently

z � − sup{x, y}, showing that − sup{x, y} is the greatest lower bound of the set {−x,−y}.
That is, − sup{x, y} = inf{−x,−y}, and the other equality is proven similarly.

(iv) If α = 0 the result is trivial. Otherwise, it is easy to see that sup{αx, αy} � α sup{x, y}.
Now suppose that z � αx, αy (so that z is an upper bound of {αx, αy}), then α−1z � x, y
and so α−1z � sup{x, y}, or equivalently z � α sup{x, y} using (O5). Note here that α−1

exists since α is a non-zero element of the field R. Therefore α sup{x, y} is the least upper

bound of the set {αx, αy}, and the result for infima is analogous. �

Definition 3.13. Let X be a Riesz space and x ∈ X.

(i) The positive part of x is x+ = sup{x, 0}.
(ii) The negative part of x is x− = sup{−x, 0} = − inf{x, 0}.
(iii) The absolute value of x is |x| = sup{x,−x}.
With these notions, we have the lattice operations of a Riesz space, given by

(x, y) 7→ x ∨ y, (x, y) 7→ x ∧ y, x 7→ x± and x 7→ |x|. (3.1)

Notice that x+, x−, |x| � 0, so these lattice operations really map X → X+ ⊆ X.

Proposition 3.14. If X is a Riesz space and x ∈ X, then x = x+ − x− and |x| = x+ + x−.
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Proof. Using proposition 3.12, we obtain that

x = x+ 0 = sup{x, 0}+ inf{x, 0} = sup{x, 0} − sup{−x, 0} = x+ − x−, and

|x| = sup{x,−x} = sup{2x, 0} − x = 2x+ − (x+ − x−) = x+ + x−,

as required. �

Remark 3.15. In R, the absolute value |x| = max{x,−x} defines a norm, and we have a similar

result in a Riesz space X. Indeed, if x = 0 then clearly |x| = sup{0, 0} = 0 and if |x| = 0, then

sup{x,−x} = 0 and since the supremum is an upper bound, x � 0 and −x � 0, that is x � 0.

Then by (O2) we obtain that x = 0. Also |αx| = |α||x| for any scalar α and x ∈ X. Indeed,

|αx| = (αx)+ + (αx)− = sup{αx, 0}+ sup{−αx, 0}

If α ≥ 0, then using proposition 3.12 we have that sup{αx, 0} = αx+. Also, for the second term

we have sup{−αx, 0} = − inf{αx, 0} = −α inf{x, 0} = α sup{−x, 0} = αx−. Since |α| = α for

α ≥ 0, we obtain that |αx| = |α|(x+ + x−) = |α||x|, and similarly if α ≤ 0.

The generalisation of the triangle property in (R, | · |) is given in the below proposition.

Lemma 3.16. Let X be a Riesz space and x, y ∈ X. Then (x+ y)+ � x+ + y+ and x+ � |x|.

Proof. Clearly 0 � sup{x, 0}+ sup{y, 0} = x+ + y+ and also x+ y � x+ + y+. Thus

(x+ y)+ = sup{x+ y, 0} � x+ + y+.

For the latter equation, by (O4) we have that |x| = x+ + x− � x+ + 0 = x+ since x− � 0. �

Proposition 3.17 (Triangle inequality). Let X be a Riesz space and x, y ∈ X. Then

||x| − |y|| � |x+ y| � |x|+ |y|. (3.2)

Further, | sup{x, z} − sup{y, z}| � |x− y| and | inf{x, z} − inf{y, z}| � |x− y|.

Proof. Clearly x � |x| and y � |y|, therefore by (O4) we have that

x+ y � |x|+ y � |x|+ |y|.

Similarly, −x � |x| and −y � |y| and so −x− y � |x|+ |y|. Therefore we obtain that

|x+ y| = sup{x+ y,−x− y} � |x|+ |y|.

Then using the above, we have |x| = |x+ y − y| � |x+ y|+ | − y| = |x+ y|+ |y| so that

|x| − |y| � |x+ y|,

and the symmetry of x and y gives (3.2). Now by proposition 3.12(ii), we have that

sup{x, z} = sup{(x− z) + z, (z − z) + z} = sup{x− z, 0}+ z

⇒ sup{x, z} − sup{y, z} = (sup{x− z, 0}+ z)− (sup{y − z, 0}+ z)

= (x− z)+ − (y − z)+ = ((x− y) + (y − z))+ − (y − z)+.

Then by lemma 3.16 we see that

sup{x, z} − sup{y, z} � (x− y)+ + (y − z)+ − (y − z)+ = (x− y)+ � |x− y|,

and similarly it can be shown that sup{y, z} − sup{x, z} � |x− y|.
The equation involving infima is proven in an analogous way. �
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3.3. Banach Lattices. Now since we are interested in studying operators defined on Banach

spaces, and in particular ordered Banach spaces, we also have a norm ‖ · ‖ to consider. In fact,

we consider a particular type of norm on X which, in a way, respects the partial ordering of the

space X. This norm is called a lattice norm, as defined below.

Definition 3.18. A norm ‖ · ‖ on a Riesz space X is called a lattice norm if

∀x, y ∈ X, |x| � |y| ⇒ ‖x‖ ≤ ‖y‖.

A Banach lattice is a Riesz space which is complete when equipped with the lattice norm.

Example 3.19. Let n ∈ N and consider the Riesz space Rn with componentwise ordering (in

other words, the lexicographic ordering). Then any x ∈ Rn can be expressed as x = (x1, . . . , xn)

and we have that |x| = (|x1|, . . . , |xn|). Thus if |x| � |y|, then |xi| ≤ |yi| in R for all i = 1, . . . , n

and thus clearly ‖x‖ ≤ ‖y‖ where ‖ · ‖ is the standard Euclidean norm, so ‖ · ‖ is a lattice norm.

Since Rn is complete with norm, we have that (R, ‖ · ‖,�) is a Banach lattice.

Lemma 3.20. If X is a Banach lattice, then ‖x‖ = ‖|x|‖ for any x ∈ X.

Proof. Since x � |x| for any x ∈ X, we have that |x| � |(|x|)|. But since |x| � 0, it follows that

|(|x|)| = |x| and thus |x| � |(|x|)| � |x| for any x ∈ X. Thus by definition of the lattice norm,

we have that ‖x‖ ≤ ‖|x|‖ ≤ ‖x‖, as required. �

Proposition 3.21. If X is a normed lattice, then the lattice operations are uniformly continuous

in X with respect to any of the variables involved.

Proof. We denote the lattice operations from (3.1) by the maps f1, . . . , f5, respectively. In other

words, f1(x, y) = x∨ y, f2(x, y) = x∧ y, f3(x) = x+, f4(x) = x− and f5(x) = |x|. Now we have

for f4 that |f4(x)−f4(y)| = | sup{x, 0}−sup{y, 0}| � |x−y| and thus ‖f4(x)−f4(y)‖ ≤ ‖x−y‖,
proving uniform continuity of f4 and similarly for f3. Since f5 = f3 + f4, it follows immediately

that f5 is uniformly continuous. Now for f1, we using proposition 3.17 to deduce that

| sup{x, z} − sup{y, v}| = | sup{x, z} − sup{y, z}+ sup{y, z} − sup{y, v}| � |x− y|+ |z − v|.

Therefore using lemma 3.20 and the definition of the lattice norm, we have that

‖f1(x, z)− f1(y, v)‖ ≤ ‖|x− y|+ |z − v|‖ ≤ ‖x− y‖+ ‖z − v‖

Hence f1 is uniformly continuous in both of its variables, and similarly so is f2. �

Definition 3.22. We say that a Banach lattice X is

(i) an AL-space if ‖x+ y‖ = ‖x‖+ ‖y‖ for all x, y ∈ X+; and

(ii) an AM-space if ‖x ∨ y‖ = max{‖x‖, ‖y‖} for all x, y ∈ X+.

Examples 3.23. The space of continuous functions X = C0([0, 1],R) with supremum norm

and ordering as in example 3.7 is an AM -space. First note that X is complete under this norm,

and it is a lattice norm since if |f | � |g|, then |f(x)| ≤ |g(x)| for any x ∈ [0, 1], and thus taking

the supremum yields ‖f‖ ≤ ‖g‖. An example of an AL-space is X = L1(Ω), where X has the

natural ordering given by f � g if and only if f(x) ≤ g(x) for almost every x ∈ Ω.

For further discussions of such spaces, see [1, Remark 2.58 – 2.61].
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3.4. Order and Norm. Existence of an order in some set X introduces a natural way to define

convergence in the Banach space. Now any sequence (xn)n∈N ⊆ R can equivalently be thought

of as an element of RN, that is a function N→ R with n 7→ xn, and this motivates the definition

of a net in an arbitrary set X. Since R is a metric space, we have the notion of distances and

thus convergence, but for general ordered spaces X we can not do this, hence we need to define

what it means for a net (xα)α∈∆ to converge. In fact, many of the results in (R, | · |) hold more

generally, for example unique limits and converging and increasing sequences (xn)n∈N have limit

sup{xn : n ∈ N}, amongst other things.

Definition 3.24. Let ∆ be a directed ordered set (so any pair of elements has an upper bound).

Then a net (xα)α∈∆ in a set X is a function from the index set ∆ to X, with α 7→ xα.

A subnet of (xα)α∈∆ is a net (yβ)β∈B such that

∀α ∈ ∆∃β ∈ B such that ∀B 3 β′ � β ∃α′ � α such that yβ′ = xα′ .

Example 3.25. Sequences and subsequences are examples of nets and subnets.

Definition 3.26. A net (xα)α∈∆ in a normed space X converges to some x ∈ X if

∀ε > 0 ∃α0 ∈ ∆ such that ‖xα − x‖ ≤ ε∀α � α0.

This is denoted as xα
n−→ x or x = limα∈∆ xα.

Definition 3.27. Let X be a Riesz space and (xα)α∈∆ a net in X, and let x ∈ X.

(i) The net is decreasing, denoted xα ↓, if for any α1, α2 ∈ ∆, if α1 � α2 then xα1
� xα2

.

(ii) We write xα ↓ x if the net is decreasing and x = inf{xα : α ∈ ∆}.
(iii) We write xα ↓� x if the net is decreasing and bounded below by x, that is xα � x ∀α ∈ ∆.

We can define xα ↑, xα ↑ x and xα ↑� x in an analogous way.

Definition 3.28. The net (xα)α∈∆ in X is order convergent to x ∈ X if there exist nets (yβ)β∈B
and (zγ)γ∈Γ such that yβ ↑ x and zγ ↓ x and for any (β, γ) ∈ B×Γ, there exists an α ∈ ∆ such

that yβ � xα � zγ . We denote this by xα
o−→ x.

Proposition 3.29. Let X be an ordered set and (xα)α∈∆ a net in X.

(i) If either xα ↑ x or xα ↓ x for some x ∈ X, then xα
o−→ x.

(ii) Conversely, if xα ↑ (respectively xα ↓) and xα
o−→ x, then xα ↑ x (respectively xα ↓ x).

Proof. (i) Suppose that xα ↓ x, that is the net is decreasing and x = inf{xα : α ∈ ∆}. Now

we consider the nets (yα)α∈∆ and (zα)α∈∆ defined by yα = xα and zα = x for each α ∈ ∆.

Then we have that yα � xα � zα for all α ∈ ∆ and hence xα
o−→ x.

(ii) Suppose that xα ↑ and xα
o−→ x and let (yβ)β∈B and (zγ)γ∈Γ be the nets which define the

convergence xα
o−→ x. Then for each (β, γ) there exists an αβ,γ such that yβ � xα � zγ for

any α � αβ,γ . Let α, β, γ be fixed, then for α′ � sup{αβ,γ , α} we have that xα � xα′ � zγ
and so xα � zγ for any α, γ. Since zγ ↓ x, taking the infimum yields xα � x for any α,

so x is an upper bound. Now let y be any other upper bound for (xα)α∈∆, then xα � y

and for any β ∈ B, as above, there exists an α with yβ � xα � y and thus yβ � y for all

β ∈ B. Then as yβ ↑ x, we have that x � y and so indeed x is the least upper bound of

the net (xα)α∈∆, as required. �



PERTURBATIONS OF POSITIVE SEMIGROUPS 13

Proposition 3.30. Let X be a normed lattice and (xα)α∈∆ a net in X. Then

(i) the positive cone X+ is closed in X;

(ii) if xα ↑ and limα∈∆ xα = x, then x = sup{xα : α ∈ ∆}; and

(iii) if xα ↓ and limα∈∆ xα = x, then x = inf{xα : α ∈ ∆}.

Proof. (i) By definition, X+ = {x ∈ X : x− = 0} and the lattice operation f4 : X → X with

x 7→ x− is continuous by proposition 3.21. Hence X+ is closed as it is the preimage of a

closed set under a continuous map, that is X+ = f−1
4 ({0}). Now {0} is closed if and only

if X\{0} is open, and for any x 6= 0 we have that B(x, ‖x‖) ⊆ X\{0}, so {0} is closed.

(ii) For fixed α ∈ ∆ we have that limβ∈∆(xβ − xα) = x− xα and since (xα)α∈∆ is increasing

we see that xβ − xα ∈ X+ for β � α. Thus x− xα ∈ X+ since X+ is closed, hence x is an

upper bound for the net. Now let y be any other upper bound, then xα � y for all α ∈ ∆.

Then 0 � y − xα
n−→ y − x since xα

n−→ x by assumption. Hence again since X+ is closed,

we obtain that y − x � 0 and so indeed x = sup{xα : α ∈ ∆}.
(iii) This follows analogously to (ii). �

Definition 3.31. A Banach lattice X is a KB-space if every increasing norm-bounded sequence

of elements in X+ converges in norm in X. That is, if (xn)n∈N is a sequence of elements in X+

with xn � xm for n ≤ m and ‖xn‖ ≤M for some M > 0 and all n ∈ N, then (xn)n∈N converges.

Theorem 3.32. If X is an AL-space, then it is a KB-space.

Proof. Suppose that (xn)n∈N is an increasing and normed-bounded sequence in X+. Then we

have that 0 � xn � xm for any n ≤ m, and so |xn| � |xm|, thus ‖xn‖ ≤ ‖xm‖ as X is a Banach

lattice with lattice norm. Therefore (‖xn‖)n∈N is an increasing and bounded sequence, and thus

Cauchy as it is convergent since R is complete. Now for 0 � xn � xm, we have that

‖xm‖ = ‖xm − xn‖+ ‖xn‖

⇒ ‖xm − xn‖ = ‖xm‖ − ‖xn‖ = |‖xm‖ − ‖xn‖|,

since X is an AL-space. Thus (xn)n∈N is Cauchy and hence convergent, as required. �

3.5. Positive Operators. We are now in a position to define positive operators.

Definition 3.33. Let X and Y be Banach lattices with partial orders �1 and �2, respectively.

Then a linear operator A ∈ L(X,Y ) is positive if Ax �2 0 for any x ∈ X+, that is x �1 0.

We denote this by A � 0.

Lemma 3.34. A ∈ L(X,Y ) is a positive operator between Banach lattices if and only if

|Ax| � A|x|, ∀x ∈ X. (3.3)

Proof. Suppose that A is a positive operator and let x ∈ X. Then −|x| � x � |x|, so |x|−x � 0

and thus A(|x| − x) = A|x| −Ax � 0. Therefore Ax � A|x| and similarly −A|x| � Ax, proving

(3.3). Conversely let x ∈ X+ and suppose that (3.3) holds. Then since |x| = x, it follows that

|Ax| � A|x| = Ax and thus Ax � 0, that is A is a positive operator. �
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Example 3.35. Consider the space X = L1(Ω). If k ≥ 0 is measurable on Ω, then

(Af)(x) =

∫
Ω

k(x, y)f(y) dy

defines a positive linear operator A on X.

Example 3.36. Consider the space L(X,Y ) of linear operators where X,Y are Banach lattices.

The space C of positive operators in L(X,Y ) is a convex cone. To see this, consider A := A1+A2

for some A1, A2 � 0. With pointwise operations, for any x ∈ X+, we have Ax = A1x+A2x � 0

since Aix � 0 for i = 1, 2 and therefore A � 0, proving that C + C ⊆ C. It is clear that αC ⊆ C
for any α ≥ 0 because (αA)x = α(Ax) � α · 0 = 0 for x ∈ X+. Finally, if A ∈ C ∩ (−C), then

Ax � 0 and (−A)x � 0 for any x ∈ X+. Thus Ax � 0 and −(Ax) � 0, and therefore Ax = 0

from (O2). Since A is a linear operator, it follows that A = 0 and so C ∩ (−C) = {0}, where 0

denotes the zero operator. Since C is a convex cone in L(X,Y ), it generates a natural ordering

for L(X,Y ). In particular, A � B if and only if B − A ∈ C, or in other words Ax � Bx for all

x ∈ X+. However, this cone does not generate L(X,Y ).

Linear operators between finite-dimensional vector spaces are uniquely determined by their

behaviour on any basis of the domain. Analogously, positive operators are uniquely determined

by their action on the positive cone of their domain. More precisely, we have the following:

Theorem 3.37. Suppose that X and Y are Banach lattices and A : X+ → Y+ is additive, that

is A(x+y) = Ax+Ay for any x, y ∈ X+. Then A extends uniquely to a positive linear operator

Ã : X → Y . Moreover, we have that Ãx = Ax+ −Ax− for any x ∈ X.

Proof. See [1, Theorem 2.64]. �
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4. Semigroups

We begin with an example which motivates the use of semigroups. The initial value problem

u′(t) = Au(t) for t > 0 with u(0) = u0 has a well-known solution when either A ∈ Mn,n(C) or

A ∈ L(X) for some Banach space X, namely u(t) = etAu0 in both cases. Here we define

etA :=

∞∑
n=0

tn

n!
An, (4.1)

the matrix exponential. When A ∈ L(X), this operator is well-defined as its partial sums define

a Cauchy sequence in X and ‖etA‖ ≤ et‖A‖. However, when A is an unbounded operator defined

on some domain D(A) ⊆ X, it is not possible to immediately make sense of (4.1). Despite this,

we would still like to define the solution when A is unbounded, and it turns out that the theory

of strongly continuous semigroups makes this possible.

Definition 4.1. Let X be a Banach space. Then a one-parameter family {T (t)}t≥0 ⊆ L(X) is

a semigroup if T (0) = I and T (t + s) = T (t)T (s) for every t, s ≥ 0. A semigroup is said to be

uniformly continuous or strongly continuous, respectively, if

lim
t→0+

‖T (t)− I‖ = 0 or lim
t→0+

‖T (t)x− x‖ = 0 ∀x ∈ X.

To every semigroup T = {T (t)}t≥0 we can define its infinitesimal generator as the operator

Ax = lim
t→0+

T (t)x− x
t

for D(A) :=
{
x ∈ X : ∃ lim

t→0+

T (t)x− x
t

}
,

where D(A) is the domain of A.

Remark 4.2. A strongly continuous semigroup is sometimes referred to as a C0-semigroup. Our

main interest lies with C0-semigroups since we are considering unbounded operators on X, but

for completion we state some properties of uniformly continuous semigroups (see [3, §1.1]). An

operator A generates (i.e. is the infinitesimal generator for) a uniformly continuous semigroup

if and only if A ∈ L(X), in which case the semigroup is given by {etA}t≥0. Every semigroup

has a unique infinitesimal generator by definition, and on the other hand every bounded linear

operator A gives rise to a unique uniformly continuous semigroup. Further, for any uniformly

continuous semigroup {T (t)}t≥0, there exists ω ≥ 0 with ‖T (t)‖ ≤ eωt for all t ≥ 0 and t 7→ T (t)

is differentiable in norm with derivative AT (t) = T (t)A.

Proposition 4.3. Let {T (t)}t≥0 be a C0-semigroup. Then there exists ω ≥ 0 and M ≥ 1 with

‖T (t)‖ ≤Meωt, t ≥ 0.

Proof. We claim first that ‖T (t)‖ is bounded on [0, η] for some η > 0. Suppose not, then there

exists a null sequence (tn)n∈N in R+ with ‖T (tn)‖ ≥ n. From the Banach-Steinhaus theorem, for

some x ∈ X, T (tn)x is unbounded but this contradicts the strong continuity of the semigroup

since T (tn)x→ x in norm. Therefore there exist M,η ≥ 0 such that ‖T (t)‖ ≤ M for t ∈ [0, η],

where in fact M ≥ 1 since T (0) = I and ‖I‖ = 1. Let ω = η−1 logM ≥ 0, then for any t ≥ 0 we

have that t = nη + δ for some 0 ≤ δ < η, hence ‖T (t)‖ = ‖T (δ)T (η)n‖ ≤MMn = Meωt. �

We write A ∈ G(M,ω) if A generates a C0-semigroup satisfying ‖T (t)‖ ≤Meωt, as above.
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Definition 4.4. The type or uniform growth bound of the semigroup {T (t)}t≥0 is defined by

ω0 = ω0(T ) := inf{ω : ∃M > 0 such that ‖T (t)‖ ≤Meωt ∀t ≥ 0}.

Now, the one-sided continuity of t 7→ T (t)x as t→ 0+ is equivalent to full continuity.

Lemma 4.5. If {T (t)}t≥0 is a C0-semigroup, then R+ 3 t 7→ T (t)x ∈ X is continuous.

Proof. Let t ≥ 0, then for any h ≥ 0 we have, using proposition 4.3, that

‖T (t+ h)x− T (t)x‖ ≤ ‖T (t)‖‖T (h)x− x‖ ≤Meωt‖T (h)x− x‖,

and for t ≥ h ≥ 0, we have ‖T (t− h)x− T (t)x‖ ≤ ‖T (t− h)‖‖x− T (h)x‖ ≤Meωt‖x− T (h)x‖,
hence continuity follows by taking h→ 0 and using the strong continuity of the semigroup. �

Corollary 4.6. For any C0-semigroup {T (t)}t≥0, for any x ∈ X we have that

lim
h→0+

1

h

∫ t+h

t

T (s)xds = T (t)x.

Remark 4.7. Let I be a closed interval of the form [a, b] for some a, b ∈ R with a < b and also

let f : I → X be a continuous function. If (A,D(A)) is a closed operator on X and f(t) is any

D(A)-valued function such that both f(t) and Af(t) are continuous on X, then it follows that∫ b

a

Af(t) dt = A

∫ b

a

f(t) dt. (4.2)

Consider the case where X = R, and define a sequence (xn)n∈N ⊆ R in the following way. Since

f is continuous, it is Riemann integrable, thus we consider a uniform partition of [a, b] into n+1

subintervals; that is, define {u0, . . . , un} by ui = a+ (b−a)i/n. Then we can define the integral

of f over [a, b] as the limit of Riemann-Darboux sums, that is

x :=

∫ b

a

f(t) dt = lim
n→∞

n∑
i=1

f(ui−1)
1

n
=: lim

n→∞
xn.

Then since A is a linear operator on R, it is continuous and therefore

lim
n→∞

Axn = lim
n→∞

n∑
i=1

Af(ui−1)
1

n
=

∫ b

a

Af(t) dt =: y.

Then using that A is closed, Ax = y and x ∈ D(A), and this is exactly (4.2). The above ideas

can be generalised to prove the result for any space X using the Bochner integral [1, §2.1.5]. In

particular, the equality (4.2) also holds for elements of a semigroup {T (t)}t≥0 because they are

bounded, everywhere defined operators on X, and so closed by the closed graph theorem.

We now prove some elementary properties relating semigroups and their generators.

Proposition 4.8. Let {T (t)}t≥0 be a C0-semigroup on X with infinitesimal generator (A,D(A)).

(i) If x ∈ X, then
∫ t

0
T (s)xds ∈ D(A) and

A

∫ t

0

T (s)xds = T (t)x− x.
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(ii) If x ∈ D(A), then T (t)x ∈ D(A) and R+ 3 t 7→ T (t)x ∈ X is differentiable with

d

dt
T (t)x = AT (t)x = T (t)Ax. (4.3)

Consequently, for any t, s ≥ 0, we obtain that

T (t)x− T (s)x =

∫ t

s

T (τ)Ax dτ =

∫ t

s

AT (τ)xdτ. (4.4)

Proof. Let x ∈ X and h > 0. Then using (4.2), we obtain that

T (h)− I
h

∫ t

0

T (s)xds =
1

h

∫ t

0

(T (s+ h)x− T (s)x) ds =
1

h

∫ t+h

t

T (s)x ds− 1

h

∫ h

0

T (s)xds,

and so taking h to zero and using corollary 4.6 we obtain the result in (i). If x ∈ D(A), then

T (h)− I
h

T (t)x = T (t)

(
T (h)− I

h

)
x,

and so taking h to zero proves that T (t)x ∈ D(A) and also AT (t)x = T (t)Ax. Further, this

also implies that t 7→ T (t)x is differentiable with the required derivative. Finally, (4.4) follows

by integrating (4.3) over the interval [s, t]. �

Remark 4.9. As a result, the differential equation in X given by

∂u(t)

∂t
= Au(t) for t > 0 with lim

t→0+
u(t) = x

has solution given by u(t) = T (t)x, provided that x ∈ D(A).

Theorem 4.10. The generator A of a C0-semigroup {T (t)}t≥0 has dense domain and is closed.

Proof. For x ∈ X, let xt := t−1
∫ t

0
T (s)xds. Then we have xt ∈ D(A) for t > 0 by proposition

4.8(i) and xt → x as t → 0+ by continuity, so D(A) is dense in X. For closedness, let D(A) 3
xn → x and Axn → y in X as n→∞. Then by (4.4),

T (t)xn − xn =

∫ t

0

T (s)Axn ds.

The integrand converges uniformly on bounded intervals to T (s)y, so taking n→∞ gives

T (t)x− x =

∫ t

0

T (s)y ds.

Diving by t > 0 and taking t→ 0+ it is clear that x ∈ D(A) and Ax = y, so A is closed. �

Lemma 4.11. A generates the semigroup {T (t)}t≥0 if and only if A−ωI generates {e−ωtT (t)}t≥0.

Proof. Suppose that A generates the semigroup {T (t)}t≥0 and define S(t) := e−ωtT (t). Clearly

S(t+ s) = S(t)S(s) for any t, s ≥ 0 and S(0) = e−ω0T (0) = I. Also, we have that

‖S(t)x− x‖ = ‖e−ωtT (t)x− x‖ ≤ e−ωt‖T (t)x− x‖+ |e−ωt − 1|‖x‖,

and so taking t→ 0+ we see that {S(t)}t≥0 generates a C0-semigroup with generator A−ωI as

lim
t→0+

S(t)x− x
t

= lim
t→0+

[
e−ωt

T (t)x− x
t

+
e−ωt − 1

t
x

]
= Ax− ωx,
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which holds for any x ∈ D(A). Conversely suppose that {S(t)}t≥0 is a semigroup with generator

A−ωI. Then for any t, s ≥ 0, S(t+ s) = S(t)S(s) implies that T (t+ s) = T (t)T (s) by division

by e−ω(t+s), and I = S(0) = T (0). Moreover for any x ∈ D(A− ωI) = D(A),

lim
t→0+

T (t)x− x
t

= lim
t→0+

[
eωt

e−ωtT (t)x− x
t

+
eωt − 1

t
x

]
= (A− ωI)x+ ωx = Ax,

and so A is the generator of the semigroup {T (t)}t≥0, as required. �

Example 4.12 (Translation semigroup). Consider the Banach space X = BUC(R) containing

the uniformly continuous and bounded functions on R with the supremum norm. Then define

(T (t)f)(s) := f(t+ s) for any f ∈ X and fixed t ≥ 0.

This defines a C0-semigroup (of contractions) {T (t)}t≥0. To see this, we have the following.

(i) It is clear that T (0) = I since (T (0)f)(s) = f(s).

(ii) For any t, t′ ≥ 0, by definition (T (t+ t′)f)(s) = f(t+ t′+ s). Now defining the function ft′

by ft′(s) = f(t′ + s) for s ∈ R, we obtain that (T (t)T (t′)f)(s) = (T (t)ft′)(s) = ft′(t+ s),

and hence T (t+ t′) = T (t)T (t′) for any t, t′ ≥ 0.

(iii) Let f ∈ X and let ε > 0 and consider the following,

‖T (t)f − f‖ = sup
s∈R
|(T (t)f)(s)− f(s)| = sup

s∈R
|f(t+ s)− f(s)|. (4.5)

Since f is uniformly continuous, there exists a δ > 0 such that for all t′, s′ ∈ R, if |t′−s′| < δ

then |f(t′)− f(s′)| < ε. Since we are interested in taking t→ 0+ in (4.5), we can assume

that |(t+ s)− s| = |t| < δ. Then ‖T (t)f − f‖ < ε, proving strong continuity.

Hence {T (t)}t≥0 is indeed a C0-semigroup. To see that it is a semigroup of contractions, consider

‖T (t)‖ = sup
‖f‖≤1

‖T (t)f‖ = sup
‖f‖≤1

‖f‖ ≤ 1, ∀t ≥ 0.

The infinitesimal generator of this semigroup is defined by (Af)(s) = f ′(s) for f ∈ D(A) since

(Af)(s) := lim
h→0+

T (h)f − f
h

(s) = lim
h→0+

f(s+ h)− f(s)

h
,

and the domain D(A) consists of all f ∈ X for which f ′ exists and f ′ ∈ X.

4.1. Hille-Yosida Generation Theorem. Given a C0-semigroup {T (t)}t≥0 with infinitesimal

generator A, we know that the solution of the initial value problem ∂tu(t) = Au(t) on t > 0 with

u(0) = u0 is given by u(t) = T (t)u0 if u0 ∈ D(A), however with most problems the operator

A will be given and it is not immediately obvious what semigroup it generates (it might not

even generate a semigroup). In turns out that there are necessary and sufficient conditions for

a linear operator to generate a C0-semigroup, and this is realised in the theorem of Einar Hille

and Kōsaku Yosida, or more generally by William Feller, Isao Miyadera and Ralph Phillips.

Theorem 4.13 (Feller-Miyadera-Phillips). A ∈ G(M,ω) if and only if

(i) A is closed and densely defined; and

(ii) (ω,∞) ⊆ %(A) and for all n ≥ 1 and λ > ω,

‖(λI −A)−n‖ ≤ M

(λ− ω)n
. (4.6)
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Proof. Suppose that A ∈ G(M,ω), then A is closed and densely defined by theorem 4.10, and by

assumption we have that A generates a C0-semigroup {T (t)}t≥0 which satisfies ‖T (t)‖ ≤Meωt

for some M ≥ 1 and ω ∈ R. Now for λ > ω, we define

R(λ)x :=

∫ ∞
0

e−λtT (t)x dt. (4.7)

This is well-defined since ‖e−λtT (t)x‖ ≤ e−λt‖T (t)‖‖x‖ ≤Me(ω−λ)t‖x‖ and therefore∫ ∞
0

‖e−λtT (t)x‖dt ≤M‖x‖
∫ ∞

0

e(ω−λ)t dt =
M‖x‖
λ− ω

<∞.

Consequently, R(λ) defines a bounded linear operator on X. Now for h > 0,

T (h)− I
h

R(λ)x =
1

h

∫ ∞
0

e−λt(T (t+ h)− T (t))x dt

=
eλh

h

∫ ∞
h

e−λτT (τ)xdτ − 1

h

∫ ∞
0

e−λtT (t)x dt where τ := t+ h

=
eλh − 1

h

∫ ∞
0

e−λtT (t)xdt− 1

h

∫ h

0

e−λtT (t)xdt

Then taking h→ 0+ we obtain that R(λ)x ∈ D(A) for any x ∈ X and AR(λ)x = λR(λ)x− x.

Equivalently, (λI −A)R(λ)x = x for any x ∈ X so that (λI −A)R(λ) = I. Also for x ∈ D(A),

R(λ)Ax =

∫ ∞
0

e−λtT (t)Axdt =

∫ ∞
0

e−λtAT (t)x dt = AR(λ)x,

using (4.4) and also (4.2) since A is a closed operator. Therefore also R(λ)Ax = λR(λ)x − x
for any x ∈ D(A) so that R(λ)(λI −A)x = x. Since D(A) is dense in X, this also holds for any

x ∈ X. Consequently we obtain that R(λ) = R(λ,A) and so necessarily (ω,∞) ⊆ %(A) because

(4.7) was well-defined for any R 3 λ > ω. Now for the estimate (4.6), we have for λ > ω that

d

dλ
R(λ,A)x =

d

dλ

∫ ∞
0

e−λtT (t)xdt = −
∫ ∞

0

te−λtT (t)x dt,

and therefore by induction, for any n ≥ 1,

dn

dλn
R(λ,A)x = (−1)n

∫ ∞
0

tne−λtT (t)xdt. (4.8)

On the other hand, as a result of the resolvent identity, we have from (2.2) that

dn

dλn
R(λ,A) = (−1)nn!R(λ,A)n+1.

Therefore by comparing this and (4.8) we see that for n ≥ 1,

R(λ,A)nx =
1

(n− 1)!

∫ ∞
0

tn−1e−λtT (t)xdt.

As a result, taking norms and using that ‖T (t)‖ ≤Meωt we obtain that

‖(λI −A)−nx‖ = ‖R(λ,A)nx‖ ≤ M‖x‖
(n− 1)!

∫ ∞
0

tn−1e−(λ−ω)t dt =
M‖x‖

(λ− ω)n
.

The converse relies on the Yosida approximations of A, namely the bounded operators

Aλ = λAR(λ,A) = λ2R(λ,A)− λI.

For a proof, refer to [3, §1.3–§1.5]. �
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When M = 1, the conditions of the generation theorem greatly simplify to the following.

Corollary 4.14 (Hille-Yosida). A ∈ G(1, ω) if and only if

(i) A is closed and densely defined; and

(ii) (ω,∞) ⊆ %(A) and for any λ > ω, we have ‖(λI −A)−1‖ ≤ (λ− ω)−1.

Proof. (⇒) follows by theorem 4.13 and (⇐) follows again using the Yosida approximations. �

Remark 4.15. Taking ω = 0 in corollary 4.14 gives conditions for A to generate a semigroup of

contractions, that is a semigroup satisfying ‖T (t)‖ ≤ 1 for all t ≥ 0. In fact, we can recover the

Hille-Yosida theorem from this contraction semigroup case. Indeed, suppose that {T (t)}t≥0 is a

C0-semigroup satisfying ‖T (t)‖ ≤ eωt for t ≥ 0 and some ω ∈ R. Then consider S(t) = e−ωtT (t).

Clearly {S(t)}t≥0 is a semigroup of contractions, with generator A− ωI by lemma 4.11, where

A is the generator of {T (t)}t≥0. Then A − ωI is closed and densely defined, hence A is closed

by lemma 2.10 and densely defined as D(A) = D(A−ωI). Further, (0,∞) ⊆ %(A−ωI) and for

any λ > 0 we have that ‖R(λ,A− ωI)‖ ≤ λ−1. Now if λ > ω, then λ− ω > 0 and the operator

(λ− ω)I − (A− ωI) = λI −A is invertible, hence (ω,∞) ⊆ %(A). Moreover, we have that

‖R(λ− ω,A− ωI)‖ ≤ 1

λ− ω
,

but in fact R(λ−ω,A−ωI) = R(λ,A). Hence if we only assume that the Hille-Yosida theorem

works for contractions semigroups, that is semigroups with ‖T (t)‖ ≤ 1 for all t ≥ 0, then we

can deduce a generation theorem for semigroups with ‖T (t)‖ ≤ eωt for some ω ∈ R.

Remark 4.16. The resolvent formula in (4.7) also holds for any λ ∈ C with <[λ] > ω0(T ), so

R(λ,A)x =

∫ ∞
0

e−λtT (t)x dt. (4.9)

This result can be proven in a similar way to that in the proof of the Hille-Yosida theorem.

4.2. Lumer-Phillips Generation Theorem. We now consider the Lumer-Phillips generation

theorem, which relates to dissipative operators, but first we recall the Hanh-Banach theorem.

Note that for a normed space X, the dual space X∗ = L(X,F) is the space of all continuous (or

bounded) linear functionals on X, and we usually denote by 〈x∗, x〉 the value of the functional

x∗ ∈ X∗ at the point x ∈ X.

Theorem 4.17 (Hanh-Banach). Let X be a vector space over F = R or C and let p : X → R be

a seminorm, that is a function which is subadditive and homogeneous. Suppose that Z ⊆ X is

a linear subspace and f : Z → F is a linear functional satisfy |f(z)| ≤ p(z) for all z ∈ Z. Then

there exists a linear functional F : X → F such that F |Z = f and |F (x)| ≤ p(x) for all x ∈ X.

Corollary 4.18. Let X be a normed space and x 6= 0.

Then there exists an x∗ ∈ X∗ with 〈x∗, x〉 = ‖x‖2 = ‖x∗‖2.

Proof. Let f ∈ V ∗ for some linear subspace V ⊆ X. The function p(x) = ‖f‖‖x‖ for x ∈ X is

a seminorm which satisfies |f(v)| ≤ p(v) for all v ∈ V . Therefore by the Hanh-Banach theorem,

there exists an extension F with F |V = f and |F (x)| ≤ ‖f‖‖x‖ for all x ∈ X, thus ‖F‖ ≤ ‖f‖.
In fact ‖F‖ = ‖f‖ as F |Z = f . Now consider the subspace Z = Fx and define g ∈ L(Z,F) by
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g(αx) = α‖x‖. Now any αx ∈ Z has norm one if and only if |α| = 1/‖x‖ and thus ‖g‖ = 1, that

is g ∈ Z∗. Thus from the above, there exists a G ∈ X∗ with G|Z = g and also ‖G‖ = ‖g‖ = 1. So

taking x∗ = ‖x‖G we have 〈x∗, x〉 = ‖x‖G(x) = ‖x‖2 as x ∈ Z and ‖x∗‖ = ‖x‖‖G‖ = ‖x‖. �

Definition 4.19. Let x ∈ X. Then the duality set F (x) ⊆ X∗ of x is the set

F (x) = {x∗ : x∗ ∈ X∗ and 〈x∗, x〉 = ‖x‖2 = ‖x∗‖2}.

This set is non-empty for all x ∈ X\{0} by corollary 4.18 and since 0 ∈ F (0).

Since the duality set is non-empty, we are now in a position to define dissipative operators.

Definition 4.20. A linear operator (A,D(A)) in X is called dissipative if

∀x ∈ D(A)∃x∗ ∈ F (x) such that <〈x∗, Ax〉 ≤ 0.

The following proposition gives a useful characterisation of dissipative operators.

Proposition 4.21. A linear operator (A,D(A)) in X is dissipative if and only if

‖(λI −A)x‖ ≥ λ‖x‖ for all x ∈ D(A) and λ > 0. (4.10)

Proof. Suppose that A is dissipative and that x ∈ D(A) and λ > 0 are arbitrary. If x = 0, then

(4.10) holds immediately, so assume now that x 6= 0. Now because A is dissipative, there exists

an x∗ ∈ F (x), so ‖x∗‖ = ‖x‖, such that <〈x∗, Ax〉 ≤ 0 and therefore we obtain that

‖(λI −A)x‖‖x‖ = ‖(λI −A)x‖‖x∗‖ ≥ |〈x∗, (λI −A)x〉|

≥ <〈x∗, (λI −A)x〉 = <[λ〈x∗, x〉 − 〈x∗, Ax〉] ≥ λ‖x‖2.

The converse statement follows by the Banach-Alaoglu theorem, which states that the unit ball

in X∗ is compact in the weak-star topology. For a proof of this, see [3, Theorem 1.4.2]. �

Lemma 4.22. Suppose that A is a dissipative operator in X and λ0 > 0.

If im(λ0I −A) = X, then im(λI −A) = X for all λ > 0.

Proof. Let ∆ ⊆ C be the set of λ ∈ C with λ ∈ (0,∞) and im(λI−A) = X. Now if ∆ = (0,∞),

then the result holds, so we show that ∆ is both open and closed in [0,∞] and non-empty (since

then the connectedness of the interval (0,∞) implies the only open and closed sets in (0,∞)

are either ∅ or (0,∞)). To show that ∆ is open, let λ ∈ ∆. Now by definition, im(λI −A) = X

so that λI − A is onto, and if x ∈ D(A) is such that (λI − A)x = 0, then by (4.10) we have

that λ‖x‖ = 0 and so λI −A is one-to-one. Therefore (λI −A)−1 exists and so λ ∈ %(A). Now

by theorem 2.25, the resolvent set is open and so there exists a neighbourhood U of λ in %(A).

Then U ∩ (0,∞) ⊆ ∆ and so ∆ is open in (0,∞). To show that ∆ is closed in (0,∞), consider

a sequence (λn)n∈N ⊆ ∆ with λn → λ > 0. Then λ ∈ ∆ if and only if im(λI −A) = X. Clearly

im(λI −A) ⊆ X, so let y ∈ X. Now for all n ∈ N there is an xn ∈ D(A) with (λnI −A)xn = y,

and so by (4.10) we have that ‖xn‖ ≤ λ−1
n ‖y‖ and as λ−1

n → λ−1 is convergent, it is bounded,

so in fact ‖xn‖ ≤ C for some C > 0. Hence (xn)n∈N is a Cauchy sequence since

λm‖xn − xm‖ ≤ ‖λm(xn − xm)−A(xn − xm)‖ = ‖(λmI −A)xn − (λmI −A)xm‖

= ‖(λmI −A)xn − (λnI −A)xn‖ = |λn − λm|‖xn‖ ≤ C|λn − λm|.
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Since X is complete, xn → x for some x ∈ X and Axn = λnxn − y → λx − y. Now as in the

proof of theorem 4.23(i), A is a closed operator as it is dissipative, and thus x ∈ D(A) and also

Ax = λx−y, that is y ∈ im(λI−A). Therefore we have that im(λI−A) = X and hence λ ∈ ∆.

Now since λ0 ∈ ∆, we have that ∆ 6= ∅ and so ∆ = (0,∞), as required. �

With the above results, we can now state and prove the Lumer-Phillips theorem.

Theorem 4.23 (Lumer-Phillips). Let (A,D(A)) be a linear operator in X with dense domain.

(i) If A is dissipative and there is a λ0 > 0 for which im(λ0I−A) = X, then A is the generator

of a C0-semigroup of contractions in X.

(ii) If A is the generator of a C0-semigroup of contractions in X, then im(λI − A) = X for

all λ > 0 and A is dissipative. Moreover, <〈x∗, Ax〉 ≤ 0 for all x ∈ D(A) and x∗ ∈ F (x).

Proof. (i) By lemma 4.22 we have that im(λI−A) = X for all λ ∈ (0,∞). Now let λ ∈ (0,∞),

then from (4.10) we have that λI−A is one-to-one. Indeed, if (λI−A)x = 0 then λ‖x‖ = 0,

that is x = 0. Hence (λI −A)−1 exists as an operator X → D(A), and it is bounded as if

x ∈ X, then x = (λI −A)y for some y ∈ D(A) and so (4.10) gives

‖(λI −A)−1x‖ = ‖y‖ ≤ 1

λ
‖(λI −A)y‖ =

1

λ
‖x‖. (4.11)

As the operator (λI −A)−1 is bounded, it is closed by the closed graph theorem. Then by

lemma 2.10, λI−A is closed and hence so is A. Moreover, (4.11) gives that ‖R(λ,A)‖ ≤ λ−1

and clearly λ ∈ %(A) from the above. Then by Hille-Yosida (corollary 4.14) we have that

A generates a semigroup of contractions in X.

(ii) We have that A ∈ G(1, 0) as A generates a semigroup of contractions, and so (0,∞) ⊆ %(A)

from the Hille-Yosida theorem (in particular, corollary 4.14). Then for any λ ∈ (0,∞) we

have that λI − A is an invertible operator D(A) → X, and so im(λI − A) = X. Now let

x ∈ D(A) and x∗ ∈ F (x) be arbitrary. Then it follows that

|〈x∗, T (t)x〉| ≤ ‖x∗‖‖T (t)x‖ ≤ ‖T (t)‖‖x‖‖x∗‖ = ‖x‖2

⇒ <〈x∗, T (t)x− x〉 = <〈x∗, T (t)x〉 − ‖x‖2 ≤ 0.

Then diving the above by t > 0 and taking the limit as t→ 0+ we obtain that

<〈x∗, Ax〉 = <
〈
x∗, lim

t→0+

T (t)x− x
t

〉
≤ 0,

using the continuity of x∗ and <(·). In particular, A is a dissipative operator. �

4.3. Positive Semigroups. A positive semigroup is itself a semigroup but which consists of a

family of positive operators, as defined in definition 3.33.

Definition 4.24. Let X be a Banach lattice. Then the semigroup {T (t)}t≥0 on X is positive

if for any x ∈ X+ and t ≥ 0, we have that T (t)x � 0. Further, an operator (A,D(A)) is said to

be resolvent positive if there exists ω ∈ R with (ω,∞) ⊆ %(A) and R(λ,A) � 0 for all λ > ω.

If (A,D(A)) is a bounded operator in X, then it generates a C0-semigroup and the semigroup

is defined by T (t) = etA for t ≥ 0. Now when A is unbounded, provided it satisfies the con-

ditions of the Hille-Yosida or Lumer-Phillips generation theorems, it generates a C0 semigroup
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{T (t)}t≥0 but we can not make sense of etA for unbounded A. Despite this, C0-semigroups are

generalisations of the exponential and thus we would expect some properties to carry over.

It is a well-known fact that the scalar exponential eat can be expressed as the following limit,

lim
n→∞

(
1 +

ta

n

)n
= lim
n→∞

(
1− ta

n

)−n
= eat,

and the following is an analogous result for semigroups.

Theorem 4.25 (Exponential formula). Let {T (t)}t≥0 be a C0-semigroup on X.

If A is the infinitesimal generator of {T (t)}t≥0, then for any x ∈ X,

T (t)x = lim
n→∞

(
I − t

n
A
)−n

x = lim
n→∞

[n
t
R
(n
t
,A
)]n

x,

and the limit is uniform in t on any bounded interval.

Proof. See [3, Theorem 1.8.3]. �

The proof relies on the resolvent formula (4.9) and also (2.2).

Proposition 4.26. A C0-semigroup is positive if and only if its generator is resolvent positive.

Proof. Let {T (t)}t≥0 be the semigroup with infinitesimal generator A. If A is resolvent positive,

then from the exponential formula in theorem 4.25 we see that T (t)x � 0 for any x ∈ X+. Now

if the semigroup is positive, then as in remark 4.16 we have for any x ∈ X that

R(λ,A)x =

∫ ∞
0

e−λtT (t)x dt, <[λ] > ω0(T ).

Therefore for R 3 λ > ω0(T ) we have that R(λ,A)x � 0 for all x ∈ X+. �
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5. Perturbations

Let X be a Banach space and consider the differential equation in X given by

∂u(t)

∂t
= Au(t), t > 0 and u(0) = u0 ∈ X. (5.1)

As discussed in the previous chapter, the issue of finding a semigroup {T (t)}t≥0 with generator

A in order to find an explicit solution to (5.1) is given by the Hille-Yosida theorems. If such a

semigroup where to exist, it is necessary that the operator A is closed and densely defined and

satisfies some operator norm bounds on the resolvent R(λ,A) for sufficiently large λ. We now

consider a different approach, whereby we deconstruct A into the sum of two operators, namely

A = A1 +A2. If, without loss of generality, A1 is the infinitesimal generator of some semigroup

{T1(t)}t≥0, then we consider whether A1 + A2 generates a C0-semigroup as a perturbation of

the semigroup {T1(t)}t≥0. The advantage here is that the operator A1 may be a relatively nicer

operator than A itself, and a generator may be more easily found. However, there is a bit of

work involved on the perturbation side. So more formally, we consider the following problem.{
Problem. If (A,D(A)) generates a C0-semigroup on a Banach space X and (B,D(B)) is

another operator in X, then under what conditions does A+B generate a C0-semigroup.

}
Such a problem already has some potential errors. As an example, the operator A+ B is only

defined on D(A)∩D(B), which may be empty. Thus we make the slightly stronger assumption

that D(A) ⊆ D(B), and also that B is A-bounded. This means that there exists a, b ≥ 0 with

‖Bx‖ ≤ a‖Ax‖+ b‖x‖, ∀x ∈ D(A),

and D(A) ⊆ D(B). This assumption is needed as having D(A) ⊆ D(B) alone is too restrictive.

We also generalise further, to asking if there exists an extension K of A+B which generates a

C0-semigroup. In the following, we assume that (A,D(A)) generates a C0-semigroup, which we

often denote by {TA(t)}t≥0, and (B,D(B)) is the perturbing operator.

5.1. A Spectral Criterion. The following theorem gives a nice characterisation for when K,

an extension of the operator A+B, generates a semigroup. The importance of this theorem can

not be understated, and it will be used when discussing bounded and Miyadera perturbations.

Recall the definitions of the continuous, point and residual spectrum and the resolvent set.

Theorem 5.1. Assume that Λ := %(A) ∩ %(K) 6= ∅. Then

(i) 1 6∈ σp(BR(λ,A)) for any λ ∈ Λ;

(ii) 1 ∈ %(BR(λ,A)) for some/all λ ∈ Λ iff D(K) = D(A) and K = A+B;

(iii) 1 ∈ σc(BR(λ,A)) for some/all λ ∈ Λ iff D(A) ( D(K) and K = A+B; and

(iv) 1 ∈ σr(BR(λ,A)) for some/all λ ∈ Λ iff K ) A+B.

In order to prove this result, we need some preliminary lemmas.

Lemma 5.2. Suppose that %(A) 6= ∅. Then B is A-bounded if and only if

BR(λ,A) ∈ L(X) for any λ ∈ %(A). (5.2)
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Proof. Suppose that B is A-bounded and λ ∈ %(A), then there exist a, b ≥ 0 such that ‖Bx‖ ≤
a‖Ax‖+b‖x‖ for all x ∈ D(A). Now for any y ∈ X, we have R(λ,A)y ∈ D(A) since R(λ,A)X =

D(A). Therefore, as AR(λ,A) = −I + λR(λ,A), we have that

‖BR(λ,A)y‖ ≤ a‖AR(λ,A)y‖+ b‖R(λ,A)y‖ ≤M‖y‖,

for some M ≥ 0 and so BR(λ,A) ∈ L(X). Conversely, suppose (5.2) holds and let x ∈ D(A).

Then there exists a y ∈ X such that x = R(λ,A)y and thus

‖Bx‖ = ‖BR(λ,A)y‖ ≤M‖y‖ = M‖(λI −A)x‖ ≤M‖Ax‖+ λM‖x‖,

proving that B is A-bounded, as required. �

Lemma 5.3. Let λ ∈ Λ and f ∈ X. Then R(λ,K)f ∈ D(A) if and only if f ∈ (I−BR(λ,A))X.

In particular, for all x ∈ D(A) there exists a g ∈ X such that x = R(λ,K)(I −BR(λ,A))g.

Proof. Suppose that x = R(λ,K)f ∈ D(A). Then since K is an extension of A+B, we have

f = (λI −K)x = (λI −A−B)x.

Therefore with g = (λI−A)x ∈ X we see that f = g−Bx = g−BR(λ,A)g = (I−BR(λ,A))g.

Conversely, suppose that f = (I −BR(λ,A))g for some g ∈ X. Then with x = R(λ,A)g,

f = ((λI −A)−B)R(λ,A)g = (λI −A−B)x.

As K is an extension of A+B, we have that

R(λ,K)f = R(λ,K)(λI −A−B)x = R(λ,K)(λI −K)x = x,

and by definition x ∈ D(A), proving the equality. Now if x ∈ D(A), then as R(λ,A)X = D(A)

and the resolvent operator defines a bijective map, there exists a g ∈ X such that x = R(λ,A)g.

Then defining f = (I −BR(λ,A))g, from the above we see that x = R(λ,K)f , as required. �

For the following lemma, we recall the definition of the closure of an operator.

If (A,D(A)) is a linear unbounded operator which is not necessarily closed, then A is the

linear operator whose graph is the closure of A, that is G (A) = G (A). In fact, we have the more

formal definition where D(A) is the set of all x ∈ X for which there exists (xn)n∈N ⊆ D(A) and

a y ∈ X such that xn → x in X and Axn → y in Y as n→∞ and for any x ∈ D(A),

Ax = y = lim
n→∞

Axn.

Lemma 5.4. For any λ ∈ Λ, we have that D(A+B) = R(λ,K)(I −BR(λ,A))X.

Proof. Suppose first that x ∈ D(A+B). Now our underlying assumption is that D(A) ⊆ D(B),

so A+B is an operator defined on D(A). Thus there exists an y ∈ X and a sequence (xn)n∈N ⊆
D(A) with xn → x and (A+B)xn → y as n→∞. Then

‖(λI − (A+B))xn − (λx− y)‖ ≤ |λ|‖xn − x‖+ ‖(A+B)xn − y‖,

and thus with f = λx−y we have that (λI−(A+B))xn → f as n→∞. Since R(λ,A)X = D(A),

for each n ∈ N we can write xn = R(λ,A)gn for some gn ∈ X and obtain that

f = lim
n→∞

(λI − (A+B))xn = lim
n→∞

(I −BR(λ,A))gn, (5.3)
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hence f ∈ (I −BR(λ,A))X. Moreover, by lemma 5.3 we have that

xn −R(λ,K)f = R(λ,A)gn −R(λ,K)f = R(λ,K)((I −BR(λ,A))gn − f).

Therefore we see that ‖xn − R(λ,K)f‖ ≤ ‖R(λ,K)‖‖(I − BR(λ,A))gn − f‖, thus by (5.3) we

have that xn → R(λ,K)f as n→∞ and so by uniqueness of limits,

x = R(λ,K)f ∈ R(λ,K)(I −BR(λ,A))X,

and clearly this holds for all λ ∈ Λ. Conversely, suppose that x ∈ R(λ,K)(I −BR(λ,A))X, so

x = R(λ,K)f = lim
n→∞

R(λ,K)fn =: lim
n→∞

xn,

for some (fn)n∈N ⊆ (I−BR(λ,A))X which converges to f ∈ (I −BR(λ,A))X. Now by lemma

5.3 we have that xn = R(λ,K)fn ∈ D(A), thus x ∈ D(A+B). �

Lemma 5.5. Let X and Y be Banach spaces and A,B ∈ L(X,Y ).

If A ⊆ B, kerB = {0} and imA = Y , then A = B.

Proof. It suffices to show that D(A) = D(B), so suppose that x ∈ D(B)\D(A) and let y = Bx.

Since A is onto, there exists an x′ ∈ D(A) with y = Ax′, and because B is an extension of A, we

have that x′ ∈ D(B) and also y = Ax′ = Bx′. Now B is one-to-one and Bx = Bx′, so x = x′,

but this contradicts that x 6∈ D(A). So D(B)\D(A) = ∅, that is D(A) = D(B). �

We are now in a position to prove the spectral criterion theorem.

Proof of theorem 5.1. (i) Let λ ∈ Λ. Then 1 6∈ σp(BR(λ,A)) if the operator I −BR(λ,A) is

one-to-one, that is ker(I −BR(λ,A)) = {0}. Then suppose that (I −BR(λ,A))x = 0 for

some x ∈ X. Now since K is an extension of A+B, we have that

(λI −K)R(λ,A) = (λI −A−B)R(λ,A) = I −BR(λ,A),

thus (λI −K)R(λ,A)x = 0. By assumption we have that λ ∈ %(K), so (λI −K) is one-

to-one and thus R(λ,A)x = 0, that is x ∈ kerR(λ,A). But since R(λ,A) is an invertible,

hence one-to-one, operator, we obtain that x = 0, proving the result.

(ii) For any λ ∈ Λ ⊆ %(A) we have that

λI − (A+B) = (I −BR(λ,A))(λI −A),

and thus the invertibility of λI− (A+B) is equivalent to the invertibility of I−BR(λ,A).

Now if K = A+B, then I −BR(λ,A) is invertible since λ ∈ %(K) and so λ− (A+B) =

λI −K is invertible, that is 1 ∈ %(BR(λ,A)) for any λ ∈ Λ. Conversely, if I −BR(λ,A) is

invertible for some/all λ ∈ Λ, then λI − (A+B) is invertible and since K is an extension

of A+B we have that λI − (A+B) ⊆ λI −K and so K = A+B by lemma 5.5.

(iii) Let λ ∈ Λ. Then from lemma 5.4 we have that D(A+B) = D(K) if and only if

R(λ,K)X = D(K) = R(λ,K)(I −BR(λ,A))X,

that is X = (I −BR(λ,A))X since R(λ,K) is a bijective operator. Now from the above,

we have that 1 6∈ σp(BR(λ,A)) and so I−BR(λ,A) is one-to-one, therefore the statement

X = (I −BR(λ,A))X is equivalent to 1 ∈ σc(BR(λ,A)). Since the statement K = A+B

is independent of λ, it holds for all λ ∈ Λ if it holds for some λ ∈ Λ.
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(iv) From the above, all other possibilities have been exhausted. Hence K is a proper extension

of A+B, that is K ) A+B if and only if 1 ∈ σr(BR(λ,A)) as the spectrum σ(·) is the

disjoint union of σp(·), σc(·) and σr(·). �

Corollary 5.6. Suppose that Λ = %(A) ∩ %(K) 6= ∅ and r(BR(λ,A)) < 1 for some λ ∈ %(A).

Then K = A+B.

Proof. If r(BR(λ,A)) < 1, then by proposition 2.29 the operator I−BR(λ,A) is invertible with

inverse given by the Neumann series
∑∞
n=0(BR(λ,A))n. Therefore 1 ∈ %(BR(λ,A)) and so by

theorem 5.1 we have that K = A+B and D(K) = D(A), as required. �

5.2. Bounded Perturbation Theorem. If B is a bounded operator, then A+B does generate

a C0-semigroup and we have the following theorem characterising the semigroup it generates.

Indeed, this is the best case scenario for a perturbing operator.

Theorem 5.7. Suppose that (A,D(A)) ∈ G(M,ω) for some ω ∈ R and M ≥ 1 and B ∈ L(X).

Then K = A+B generates a C0-semigroup, in fact (A+B,D(A)) ∈ G(M,ω+M‖B‖). Further,

the semigroup {TA+B(t)}t≥0 generated by A+B satisfies one of the following Duhamel equations,

TA+B(t)x = TA(t)x+

∫ t

0

TA(t− s)BTA+B(s)x ds for t ≥ 0 and x ∈ X; or

TA+B(t)x = TA(t)x+

∫ t

0

TA+B(t− s)BTA(s)x ds for t ≥ 0 and x ∈ X.

Moreover, the semigroup {TA+B(t)}t≥0 is given by the Dyson-Phillips series

TA+B(t) =

∞∑
n=0

Tn(t),

where T0(t) = TA(t) and the Tn are defined recursively by the formula

Tn+1(t)x =

∫ t

0

TA(t− s)BTn(s)x ds.

The Dyson-Phillips series converges in L(X) and converges uniformly for t on bounded intervals.

To prove that (A+B,D(A)) ∈ G(M,ω+M‖B||), we need the following re-norming lemma.

Lemma 5.8. Let A be a linear operator for which (0,∞) ⊆ %(A). If for some M ≥ 0 we have

‖λnR(λ,A)n‖ ≤M for all n ≥ 1 and λ > 0.

then there exists a norm | · | on X which is equivalent to ‖ · ‖ with ‖x‖ ≤ |x| ≤M‖x‖ and

|λR(λ,A)x| ≤ |x| for all x ∈ X and λ > 0.

Proof. Let µ > 0, then for any x ∈ X we define the norm

‖x‖µ = sup
n≥0
‖µnR(µ,A)nx‖.

Then clearly ‖x‖ ≤ ‖x‖µ ≤M‖x‖ for all x ∈ X and also ‖µR(µ,A)‖µ ≤ 1 since

‖µR(µ,A)x‖µ = sup
n≥0
‖µn+1R(µ,A)n+1x‖ ≤ sup

n≥0
‖µnR(µ,A)nx‖ = ‖x‖µ. (5.4)
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Now define the norm | · | by

|x| = lim
µ→∞

‖x‖µ, x ∈ X.

It is clear that this norm is homogeneous and satisfies the triangle inequality, also if x = 0 then

‖x‖µ = 0 for any µ > 0 and so |x| = 0. On the other hand if |x| = 0, then ‖x‖µ → 0 as µ→∞.

Now if ‖x‖λ is increasing in λ, then since any norm is non-negative we have that ‖x‖µ = 0 for

any µ ∈ (0,∞), and so x = 0. So it suffices to prove that λ 7→ ‖x‖λ for any x ∈ X.

Now fix µ > 0, then we claim that ‖λR(λ,A)‖µ ≤ 1 for any 0 < λ ≤ µ.

For this, let x ∈ X and set y = R(λ,A)x. Then y = R(µ,A)(x+ (µ− λ)y) and therefore

‖y‖µ = ‖R(µ,A)x+ (µ− λ)R(µ,A)y‖µ ≤
1

µ
‖x‖µ +

µ− λ
µ
‖y‖µ,

using that ‖µR(µ,A)‖µ ≤ 1 from the above. Hence λ‖y‖µ ≤ ‖x‖µ, as claimed and so

‖λnR(λ,A)nx‖ ≤ ‖λnR(λ,A)nx‖µ ≤ ‖x‖µ

for any λ with 0 < λ ≤ µ. Thus taking the supremum over n ≥ 0 we obtain that ‖x‖λ ≤ ‖x‖µ.

Then as ‖x‖ ≤ ‖x‖µ ≤M‖x‖ for all µ > 0, taking the limit as µ→∞ we see that ‖x‖ ≤ |x| ≤
M‖x‖ and also since ‖λnR(λ,A)nx‖µ ≤ ‖x‖µ, taking n = 1 and then µ→∞ we obtain that

|λR(λ,A)x| ≤ |x|,

as required. �

We are now in a position to prove the first part of the bounded perturbation theorem. Now

if (A,D(A)) ∈ G(M,ω), then A generates a semigroup {T (t)}t≥0 with ‖T (t)‖ ≤Meωt. Then by

the Hille-Yosida theorem we have that A is a closed and densely defined operator, (ω,∞) ⊆ %(A)

and also for any n ≥ 1 and λ > ω, ‖R(λ,A)n‖ ≤ M(λ − ω)−n. Now if S(t) := e−ωtT (t), then

by lemma 4.11 this defines a semigroup with generator A′ = A− ωI. Since (ω,∞) ⊆ %(A), we

have that (0,∞) ⊆ %(A′) and for any n ≥ 1 and λ > 0, it follows that

‖R(λ,A′)n‖ = ‖R(λ+ ω,A)n‖ ≤ M

λn
,

that is ‖λnR(λ,A′)n‖ ≤M . Then by lemma 5.8 there exists a norm | · | on X with

‖x‖ ≤ |x| ≤M‖x‖ and |λR(λ,A′)x| ≤ |x| for all x ∈ X and λ > 0.

Therefore if λ > ω, we have that |(λ−ω)R(λ−ω,A′)x| = |(λ−ω)R(λ,A)x| ≤ |x| for any x ∈ X.

The above remarks are used in the following proof.

Proof of theorem 5.7. Suppose that A ∈ G(M,ω) generates the semigroup {T (t)}t≥0 and that

B ∈ L(X) is a bounded operator on X. Then there exists a norm |· | on X such that ‖x‖ ≤ |x| ≤
M‖x‖ for all x ∈ X and |R(λ,A)| ≤ (λ−ω)−1 for all real λ > ω. Therefore for λ > ω+ |B|, we

have that |BR(λ,A)| ≤ |B||R(λ,A)| < 1 and so I −BR(λ,A) is an invertible operator for such

λ. Now define the operator

R := R(λ,A)(I −BR(λ,A))−1 =

∞∑
k=0

R(λ,A)(BR(λ,A))k.



PERTURBATIONS OF POSITIVE SEMIGROUPS 29

Then (λI −A−B)R = (I −BR(λ,A))−1 −BR(λ,A)(I −BR(λ,A))−1 = I and for x ∈ D(A),

R(λI −A−B)x = R(λ,A)(λI −A−B)x+

∞∑
k=1

R(λ,A)(BR(λ,A))k(λI −A−B)x

= x−R(λ,A)Bx+

∞∑
k=1

(R(λ,A)B)kx−
∞∑
k=2

(R(λ,A)B)kx = x,

and since D(A) is dense in X by theorem 4.10, we obtain that R = (λI −A−B)−1, and so the

resolvent of A+B exists for any λ > ω + |B|. Furthermore, we have that

|(λI −A−B)−1| ≤
∞∑
k=0

|R(λ,A)||BR(λ,A)|k ≤ (1− |BR(λ,A)|)−1

λ− ω
.

Now |BR(λ,A)| ≤ |B|(λ− ω)−1, hence 1− |BR(λ,A)| ≥ (λ− ω − |B|)(λ− ω)−1 and so

|(λI −A−B)−1| ≤ 1

λ− ω − |B|
.

Now the operator A+B is densely defined as D(A+B) = D(A)∩D(B) = D(A) as D(B) = X

and also closed, since A is closed by theorem 4.10 and B is closed by the closed graph theorem.

Therefore by the Hille-Yosida theorem, A+ B is the infinitesimal generator of a C0-semigroup

{S(t)}t≥0 which satisfies |S(t)| ≤ e(ω+|B|)t for t ≥ 0. Then returning to the original norm ‖ · ‖
on X we have that ‖S(t)‖ ≤Me(ω+M‖B‖)t as ‖x‖ ≤M |x| and |B| ≤M‖B‖, as required.

For a proof of the Duhamel equations and Dyson-Phillips series, see [3, Chapter 3]. �

Remark 5.9. In the above proof we have used that A+B is closed where (A,D(A)) is a closed

operator and B ∈ L(X). To see why, consider (xn)n∈N ⊆ D(A+ B) = D(A) with xn → x and

(A+B)xn → y as n→∞. Now since B is bounded, it is continuous and so Bxn → Bx. Hence

we have that ‖Axn − (y −Bx)‖ ≤ ‖(A+B)xn − y‖+ ‖Bxn −Bx‖ and thus Axn → y −Bx as

n→∞. Then because A is closed, we have that x ∈ D(A) = D(A+B) and Ax = y−Bx, that

is (A+B)x = y, so A+B is indeed a closed operator.

5.3. Perturbations of Dissipative Operators. As previously discussed, any generator of a

C0-semigroup is closed and densely defined. Moreover, contraction semigroups have dissipative

infinitesimal generators. We now consider the following perturbation theorem.

Theorem 5.10. Let A and B be linear operators in X such that B is A-bounded and A + tB

dissipative for all t ∈ [0, 1]. If (A+ t0B,D(A)) generates a semigroup of contractions for some

t0 ∈ [0, 1], then A+ tB generates a semigroup of contractions for every t ∈ [0, 1].

Proof. See [1, Theorem 4.11]. The proof relies on the Lumer-Phillips generation theorem. �

5.4. Miyadera Perturbations. We now consider another particular type of perturbation. Let

(A,D(A)) be the linear operator in X generating the semigroup {TA(t)}t≥0, and as before we

consider B as the perturbing operator and K ⊇ A+B an operator generating a C0-semigroup.

Definition 5.11. The operator (B,D(B)) is a Miyadera perturbation of A if B is A-bounded

and there exist constant α ∈ (0,∞) and γ ∈ [0, 1) such that for all x ∈ D(A),∫ α

0

‖BTA(t)x‖dt ≤ γ‖x‖. (5.5)
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This definition is for a semigroup {TA(t)}t≥0 of arbitrary type, namely the value

ω0 = inf{ω ∈ R : ∃M ≥ 0 with ‖TA(t)‖ ≤Meωt for all t ≥ 0}.

Now below we will prove that A+B generates a C0-semigroup if B is a Miyadera perturbation

of A and A generates a C0-semigroup, and the proof is substantial easier if the semigroup A

has negative type, that is ω0 < 0. Recall by lemma 4.11 that A is the generator of {TA(t)}t≥0,

with type ω0, if and only if A− ωI is the generator of {e−ωtTA(t)}t≥0, with type ω0 − ω. Thus

provided that ω > ω0, the latter semigroup has negative type. The following lemma allows us

to assume that {TA(t)}t≥0 has negative type in theorem 5.13.

Lemma 5.12. The operator B is a Miyadera perturbation of A if and only if it is a Miyadera

perturbation of A− λI for any λ ∈ R, but possibly with different values of α and γ.

Proof. It suffices to prove the lemma for λ > 0. Indeed, if the result is proven for any λ > 0,

then if B is a Miyadera perturbation of A, we have that B is a Miyadera perturbation of A±λI
for λ > 0. So addition of λI to A for any λ ∈ R does not affect the Miyadera perturbation.

Now suppose that B is a Miyadera perturbation of A− λI for some λ > 0, then∫ α

0

‖e−λtBTA(t)x‖ dt ≤ γ‖x‖

for some α ∈ (0,∞) and γ ∈ [0, 1) and all x ∈ D(A). If γ′ = eλα < 1, then we have that∫ α

0

‖BTA(t)x‖dt ≤ eλα
∫ α

0

e−λt‖BTA(t)x‖ dt ≤ eλαγ‖x‖ = γ′‖x‖,

and so B is a Miyadera perturbation of A. On the other hand, if eλαγ ≥ 1 then we can find a

β ∈ (0, α) such that γ′ = eλβγ < 1 as γ < 1. In this case, we see that for any x ∈ D(A),∫ β

0

‖BTA(t)x‖ dt ≤ eλβ
∫ α

0

e−λt‖BTA(t)x‖ dt ≤ eλβγ‖x‖ = γ′‖x‖.

Conversely, suppose that B is a Miyadera perturbation of A. Then for any λ > 0, we have∫ α

0

e−λt‖BTA(t)x‖ dt ≤
∫ α

0

‖BTA(t)x‖ dt ≤ γ‖x‖

since ea ≤ 1 for a < 0, and so B is a Miyadera perturbation of A− λI, as required. �

Theorem 5.13. Suppose that B is a Miyadera perturbation of A and A ∈ G(M,ω′).

Then (A+B,D(A)) is the generator of a C0-semigroup, denoted by {T (t)}t≥0.

Sketch of the proof. If ω′ ≥ 0, then we consider A+B = (A− λI) + (B + λI) for some λ > ω′.

Then A− λI has negative type, and by lemma 5.12 we have that B is a Miyadera perturbation

of A−λI and A+B is the generator of a semigroup if and only if A−λI+B is by lemma 4.11.

So we can assume without loss of generality that {TA(t)}t≥0, the semigroup generated by A, as

negative type ω′ < 0. So in particular, ‖TA(t)‖ ≤Me−ωt for all t ≥ 0 where ω = −ω′ > 0.

Now for x ∈ D(A) we define the operator U1(t) for t ≥ 0 by

U1(t)x =

∫ t

0

TA(t− s)BTA(s)x ds
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Then with α ∈ (0,∞) and γ ∈ [0, 1) from the definition of B being a Miyadera perturbation of

A, we consider t with nα < t ≤ (n+ 1)α for some n ∈ N and notice that, for some constant c,

‖U1(t)x‖ ≤M
n∑
j=0

∫ α

0

‖BTA(r)TA(jα)x‖dr ≤ γM‖x‖
∞∑
j=0

‖TA(jα)‖ ≤ γM2‖x‖
1− e−ωα

=: c‖x‖,

and as D(A) is dense in X, U1(t) extends to a bounded linear operator on X where {‖U1(t)‖}t≥0

is bounded. Now for j ∈ N with j ≥ 2, we define {Uj(t)}t≥0 inductively by

Uj(t)x =

∫ t

0

Uj−1(t− s)BTA(s)xds, x ∈ D(A).

Similarly to the above estimate for ‖U1(t)x‖, for each j ≥ 0, {Uj(t)}t≥0 is a family of bounded

operators with norms that are uniformly bounded in t. Now it can be shown by induction that

n∑
j=0

Uj(t)Un−j(s) = Un(t+ s) for n ∈ N0 and t, s ≥ 0, (5.6)

where U0(t) = TA(t). Since B is a Miyadera perturbation of A, it can be shown that t 7→ Uj(t)x

is continuous at t = 0 for each x ∈ D(A). Further, {Uj(t)}t≥0 are strongly continuous at t = 0.

Now for t ∈ [0, α] and x ∈ D(A), we have that ‖U1(t)x‖ ≤Mγ‖x‖, so by density this holds for

all x ∈ X and therefore by induction ‖Uj(t)‖ ≤ Mγj . This implies that
∑∞
j=0 Uj(t) converges

in L(X) uniformly on [0, α], and using (5.6) we obtain that
∑∞
n=0 Un(2t) converges uniformly

in L(X) on [0, α], that is
∑∞
j=0 Uj(t) converges uniformly on [0, 2α]. Iterating we obtain almost

uniform convergence on [0,∞). Now define T (t) =
∑∞
j=0 Uj(t) for t ∈ [0,∞), then {T (t)}t≥0 is

a C0-semigroup on X which satisfies the Duhamel equation

T (t)x = TA(t)x+

∫ t

0

T (t− s)BTA(s)xds, x ∈ D(A).

Now it can be shown that
∫ t

0
T (t − s)BTA(s)x ds is differentiable at t = 0 for x ∈ D(A) with

derivative Bx, and by properties of the semigroup, TA(t)x is differentiable for x ∈ D(A), hence

from the Duhamel equation we obtain that Kx = Ax+ Bx for x ∈ D(A), that is K ⊇ A+ B.

Now %(A) ∩ %(K) 6= ∅ as A and K are both generators, so by theorem 5.1, for K = A + B to

hold we need that I −BR(λ,A) is invertible for some λ ∈ Λ. Using (4.9) we can deduce that

BR(λ,A)x =

∫ ∞
0

e−λtBTA(t)xdt

for any λ > 0. Now for sufficiently large λ, we have that ‖BR(λ,A)‖ < 1 so that I −BR(λ,A)

is invertible and so 1 ∈ %(BR(λ,A)), hence K = A+B and D(A) = D(K) by theorem 5.1. �

5.5. Positive Perturbations and Kato’s Theorem. We state, without proof, the following

theorem which relates to perturbing a positive semigroup of contractions.

Theorem 5.14. Let X be a KB-space and suppose (A,D(A)) and (B,D(B)) satisfy

(i) A generates a positive semigroup of contractions {TA(t)}t≥0,

(ii) r(BR(λ,A)) ≤ 1 for some λ > 0,

(iii) Bx � 0 for all x ∈ D(A)+, and

(iv) 〈x∗, (A+B)x〉 ≤ 0 for any x ∈ D(A)+ where 〈x∗, x〉 = ‖x‖ and x∗ � 0.
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Then there exists an extension (K,D(K)) of (A+B,D(A)) which generates a C0-semigroup of

contractions, denoted {TK(t)}t≥0. The generator K satisfies the following equation for λ > 0,

R(λ,K)x = lim
n→∞

R(λ,A)

n∑
k=0

(BR(λ,A))nx =

∞∑
k=0

R(λ,A)(BR(λ,A))kx.

Moreover, the semigroup {TK(t)}t≥0 satisfies the Duhamel equation, namely

TK(t)x = TA(t)x+

∫ T

0

TK(t− s)BTA(s)xds, x ∈ D(A).

Proof. For a proof of this result, see [1, Theorem 5.2 and Corollary 5.8]. �
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6. Application to Birth-and-Death Processes

Example 6.1. In this example, we consider a Markov birth-and-death process which describes

the evolution of a population whose size k at any time t is allowed to increase or decrease by

one, as a result of a birth or death of an individual in the population. Now for any time interval

∆t, the probability that a birth or death occurs is bk∆t+ o(∆t) and dk∆t+ o(∆t), respectively,

where bk and dk are the instantaneous birth and death rates when the population is of size k.

We denote the probability that the population has size k at time t ≥ 0 by uk(t).

Then the corresponding forward Kolmogorov system is given by

u′0 = −b0u0 + d1u1,

u′n = −(bn + dn)un + dn+1un+1 + bn−1un−1, n ≥ 1.
(6.1)

We assume that bn, dn > 0 for all indices, apart from setting b−1 = d0 = 0 for convenience.

The natural setting for such problems is in the Banach space X = `1, that is the space

`1 = {x = (xn)n∈N0 : ‖x‖ =

∞∑
n=0

|xn| <∞}.

We make this choice of space as uk ≥ 0 and ‖u‖ =
∑∞
k=0 uk = 1, since the uk are probabilities.

Therefore for this problem, the value of ‖u‖ should be preserved. Now it is convenient to write

the system (6.1) as the sum of two operators A and B which are defined for any u = (un)n∈N0

by (Au)n = −(bn + dn)un and (Bu)n = dn+1un+1 + bn−1un−1. Doing so we obtain that

u′ = Au+ Bu, (6.2)

where u = (un)n∈N0
, as an equivalent system to (6.1). Probabilistically we should have that

un(t) ≥ 0 and

∞∑
k=0

uk(t) =

∞∑
k=0

uk(0) = 1

for all t ≥ 0 and n ∈ N0. The equation (6.2) is now more familiar, considering the perturbation

theory of the previous chapter. It turns out that, in the natural `1 setting, a restriction of A to

a suitable domain generates a contraction semigroup.

In what now follows, we consider the more general setting where X = `p for p ∈ [1,∞).

6.1. Existence Results. Let u = (un)∞n=0 where un denotes the number of objects in state n.

For a probabilistic interpretation, un is the probability of observing an object in the state n and

so we should have ‖u‖`1 = 1, and we allow any object in the system to change its state by ±1.

Now denote by dn and bn the given rates of change for n 7→ n− 1 and n 7→ n+ 1, respectively.

In general, we also include a mechanism which allows for the change in the number of objects

at the state n (for example, removing objects from the system or introducing them), and we

denote the rate of such mechanism by (cn)∞n=0. Standard modelling yields the following system,

u′0 = −a0u0 + d1u1,

u′n = −anun + dn+1un+1 + bn−1un−1, n ≥ 1,
(6.3)

where cn = bn+dn−an. As in example 6.1, when we are discussing a birth-and-death population

system, we have that cn = 0, and such a system is called conservative as an = bn + dn.

Now we assume that d, b and a are non-negative sequences with b−1 = d0.
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Define the operator K by (Ku)n = bn−1un−1 − anun + dn+1un+1 and define A and B as in

example 6.1, that is (Au)n = −anun and (Bu)n = bn−1un−1+dn+1un+1 for n ≥ 1. Then defining

the operators in this way, we can think of the system (6.3) as one of the form u′ = Au+ Bu.

Definition 6.2. We denote by Kp the maximal realisation of K ∈ `p for p ∈ [1,∞).

That is, Kpu = Ku with domain D(Kp) = {u ∈ `p : Ku ∈ `p}.

Lemma 6.3. For any p ∈ [1,∞), the operator Kp is closed.

Proof. Suppose that u(n) → u and Kpu(n) → v in `p as n→∞ for some u, v. Then u
(n)
k → uk

for any k ≥ 0 and therefore for any k, (Kpu(n))k = bk−1u
(n)
k−1 − aku

(n)
k + dk+1u

(n)
k+1 converges to

bk−1uk−1 − akuk + dk+1uk+1, but this is just (Kpu)k as u ∈ `p. Then by uniqueness of limits,

we obtain that Kpu = v and so Kp is closed, as required. �

Definition 6.4. The operator Ap is defined to be the restriction of A to the domain

D(Ap) = {u ∈ `p : Au ∈ `p}.

Then considering the definition of A, the condition Au ∈ `p is equivalent to
∑∞
n=0 a

p
n|un|p <∞.

Lemma 6.5. The operator (Ap,D(Ap)) generates a semigroup of contractions in `p.

Proof. The idea is to use the Hille-Yosida theorem, in particular remark 4.15. Now by a similar

proof to that of lemma 6.3, the operator Ap is closed and it is also densely defined. Now for any

y = (yn)n∈N0
, we solve R(λI −Ap)y = y = (λI −Ap)Ry in order to find the resolvent R(λ,Ap).

Now (λI −Ap)y = ((λ+ an)yn)n∈N0 and thus we conjecture that (Ry)n = yn(λ+ an)−1. Since

an ≥ 0, we consider λ > 0 so that this is well-defined. Now with this, we see that

R(λI −Ap) = I = (λI −Ap)R,

and thus for any λ > 0 the resolvent R(λ,Ap) exists and so (0,∞) ⊆ %(A).

Therefore since Apu = Au = (−anun)n∈N0
and an ≥ 0, we have that

‖ApR(λ,Ap)y‖p =

∞∑
n=0

|an(R(λ,Ap)y)n|p =

∞∑
n=0

apn
|yn|p

(λ+ an)p

Now since the function x 7→ xp is increasing and well-defined for x ≥ 0, we obtain that

‖ApR(λ,Ap)y‖p ≤
∞∑
n=0

|yn|p = ‖y‖p,

and thus ‖ApR(λ,Ap)‖ ≤ 1. Also, we have that

‖R(λ,Ap)y‖p =

∞∑
n=0

1

(λ+ an)p
|yn|p ≤

1

λp
‖y‖p,

and so ‖R(λ,Ap)‖ ≤ 1/λ for all λ > 0, as required. �

Theorem 6.6. Suppose that b = (bn)n∈N0
and d = (dn)n∈N0

are non-decreasing and there exists

an α ∈ [0, 1] such that for all n, we have that

0 ≤ bn ≤ αan and 0 ≤ dn+1 ≤ (1− α)an.

Then there exists an extension Kp of (Ap + Bp,D(Ap)) which generates a positive semigroups

of contractions in `p with p ∈ (1,∞) where Bp is the restriction of B to D(Ap).
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Proof. This uses theorem 5.14; for a proof, see [1, Theorem 7.3]. �

We now consider again the natural setting of X = `1, so with p = 1.

Corollary 6.7. Suppose that b = (bn)n∈N0 and d = (dn)n∈N0 are non-negative and

an ≥ (bn + dn). (6.4)

Then there exists an extension K1 of (A1 +B1,D(A1)) which generates a positive semigroup of

contractions in `1 where B1 is the restriction of B to D(A1).

Proof. For a proof of this result, see [1, Corollary 7.5]. �
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